A162590 Polynomials with e.g.f. exp(x*t)/csch(t), triangle of coefficients read by rows.
0, 1, 0, 0, 2, 0, 1, 0, 3, 0, 0, 4, 0, 4, 0, 1, 0, 10, 0, 5, 0, 0, 6, 0, 20, 0, 6, 0, 1, 0, 21, 0, 35, 0, 7, 0, 0, 8, 0, 56, 0, 56, 0, 8, 0, 1, 0, 36, 0, 126, 0, 84, 0, 9, 0, 0, 10, 0, 120, 0, 252, 0, 120, 0, 10, 0, 1, 0, 55, 0, 330, 0, 462, 0, 165, 0, 11, 0, 0, 12, 0, 220, 0, 792, 0, 792, 0
Offset: 0
Examples
Triangle begins: 0 1, 0 0, 2, 0 1, 0, 3, 0 0, 4, 0, 4, 0 1, 0, 10, 0, 5, 0 0, 6, 0, 20, 0, 6, 0 1, 0, 21, 0, 35, 0, 7, 0 ... p[0](x) = 0; p[1](x) = 1 p[2](x) = 2*x p[3](x) = 3*x^2 + 1 p[4](x) = 4*x^3 + 4*x p[5](x) = 5*x^4 + 10*x^2 + 1 p[6](x) = 6*x^5 + 20*x^3 + 6*x p[7](x) = 7*x^6 + 35*x^4 + 21*x^2 + 1 p[8](x) = 8*x^7 + 56*x^5 + 56*x^3 + 8*x . Cf. the triangle of odd-numbered terms in rows of Pascal's triangle (A034867). p[n] (k), n=0,1,... k=0: 0, 1, 0, 1, 0, 1, ... A000035, (A059841) k=1: 0, 1, 2, 4, 8, 16, ... A131577, (A000079) k=2: 0, 1, 4, 13, 40, 121, ... A003462 k=3: 0, 1, 6, 28, 120, 496, ... A006516 k=4: 0, 1, 8, 49, 272, 1441, ... A005059 k=5: 0, 1, 10, 76, 520, 3376, ... A081199, (A016149) k=6: 0, 1, 12, 109, 888, 6841, ... A081200, (A016161) k=7: 0, 1, 14, 148, 1400, 12496, ... A081201, (A016170) k=8: 0, 1, 16, 193, 2080, 21121, ... A081202, (A016178) k=9: 0, 1, 18, 244, 2952, 33616, ... A081203, (A016186) k=10: 0, 1, 20, 301, 4040, 51001, ... ......., (A016190) . p[n] (k), k=0,1,... p[0]: 0, 0, 0, 0, 0, 0, ... A000004 p[1]: 1, 1, 1, 1, 1, 1, ... A000012 p[2]: 0, 2, 4, 6, 8, 10, ... A005843 p[3]: 1, 4, 13, 28, 49, 76, ... A056107 p[4]: 0, 8, 40, 120, 272, 520, ... A105374 p[5]: 1, 16, 121, 496, 1441, 3376, ... p[6]: 0, 32, 364, 2016, 7448, 21280, ...
Links
- Paul and Tatjana Ehrenfest, Über zwei bekannte Einwände gegen das Boltzmannsche H-Theorem, Physikalische Zeitschrift, vol. 8 (1907), pp. 311-314.
- Luca Onnis, Animation of the Ehrenfest model.
- Wikipedia, Ehrenfest model.
Crossrefs
Cf. A119467.
Programs
-
Maple
# Polynomials: p_n(x) p := proc(n,x) local k; pow := (n,k) -> `if`(n=0 and k=0,1,n^k); add((k mod 2)*binomial(n,k)*pow(x,n-k),k=0..n) end; # Coefficients: a(n) seq(print(seq(coeff(i!*coeff(series(exp(x*t)/csch(t), t,16),t,i),x,n), n=0..i)), i=0..8);
-
Mathematica
p[n_, x_] := Sum[Binomial[n, 2*k-1]*x^(n-2*k+1), {k, 0, n+2}]; row[n_] := CoefficientList[p[n, x], x] // Append[#, 0]&; Table[row[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jun 28 2013 *) n = 15; "n-th row" mat = Table[Table[0, {j, 1, n + 1}], {i, 1, n + 1}]; mat[[1, 2]] = 1; mat[[n + 1, n]] = 1; For[i = 2, i <= n, i++, mat[[i, i - 1]] = (i - 1)/n ]; For[i = 2, i <= n, i++, mat[[i, i + 1]] = (n - i + 1)/n]; mat // MatrixForm; P2 = Dot[mat, mat]; R1 = Simplify[ Eigenvectors[Transpose[P2]][[1]]/ Total[Eigenvectors[Transpose[P2]][[1]]]] R2 = Table[Dot[R1, Transpose[mat][[k]]], {k, 1, n + 1}] even = R1*2^(n - 1) (* Luca Onnis, Oct 29 2023 *)
Formula
p_n(x) = Sum_{k=0..n} (k mod 2)*binomial(n,k)*x^(n-k).
E.g.f.: exp(x*t)/csch(t) = 0*(t^0/0!) + 1*(t^1/1!) + (2*x)*(t^2/2!) + (3*x^2+1)*(t^3/3!) + ...
The 'co'-polynomials with generating function exp(x*t)*sech(t) are the Swiss-Knife polynomials (A153641).
Comments