A136630
Triangular array: T(n,k) counts the partitions of the set [n] into k odd sized blocks.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 4, 0, 1, 0, 1, 0, 10, 0, 1, 0, 0, 16, 0, 20, 0, 1, 0, 1, 0, 91, 0, 35, 0, 1, 0, 0, 64, 0, 336, 0, 56, 0, 1, 0, 1, 0, 820, 0, 966, 0, 84, 0, 1, 0, 0, 256, 0, 5440, 0, 2352, 0, 120, 0, 1, 0, 1, 0, 7381, 0, 24970, 0, 5082, 0, 165, 0, 1, 0, 0, 1024, 0, 87296, 0
Offset: 0
Triangle begins:
1;
0, 1;
0, 0, 1;
0, 1, 0, 1;
0, 0, 4, 0, 1;
0, 1, 0, 10, 0, 1;
0, 0, 16, 0, 20, 0, 1;
0, 1, 0, 91, 0, 35, 0, 1;
0, 0, 64, 0, 336, 0, 56, 0, 1;
0, 1, 0, 820, 0, 966, 0, 84, 0, 1;
0, 0, 256, 0, 5440, 0, 2352, 0, 120, 0, 1;
0, 1, 0, 7381, 0, 24970, 0, 5082, 0, 165, 0, 1;
T(5,3) = 10. The ten partitions of the set [5] into 3 odd-sized blocks are
(1)(2)(345), (1)(3)(245), (1)(4)(235), (1)(5)(234), (2)(3)(145),
(2)(4)(135), (2)(5)(134), (3)(4)(125), (3)(5)(124), (4)(5)(123).
Connection constants: Row 5 = [0,1,0,10,0,1]. Hence, with the polynomial sequence x_(n) as defined in the Comments section we have x^5 = x_(1) + 10*x_(3) + x_(5) = x + 10*x*(x+1)*(x-1) + x*(x+3)*(x+1)*(x-1)*(x-3).
- L. Comtet, Analyse Combinatoire, Presses Univ. de France, 1970, Vol. II, pages 61-62.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 225-226.
- Ch. A. Charalambides, Central factorial numbers and related expansions, Fib. Quarterly, Vol. 19, No 5, Dec 1981, pp. 451-456.
- Feng Qi and Peter Taylor, Series expansions for powers of sinc function and closed-form expressions for specific partial Bell polynomials, Appl. Anal. Disc. Math. (2024) Vol. 18, No. 1, 1-24. See p. 13.
-
A136630 := proc (n, k) option remember; if k < 0 or n < k then 0 elif k = n then 1 else procname(n-2, k-2) + k^2*procname(n-2, k) end if end proc: seq(seq(A136630(n, k), k = 1 .. n), n = 1 .. 12); # Peter Bala, Jul 27 2014
# The function BellMatrix is defined in A264428.
BellMatrix(n -> (n+1) mod 2, 9); # Peter Luschny, Jan 27 2016
-
t[n_, k_] := Coefficient[ x^k/Product[ 1 - (2*j + k - 2*Quotient[k, 2])^2*x^2, {j, 0, k/2}] + x*O[x]^n, x, n]; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 22 2013, after Pari *)
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
rows = 13;
M = BellMatrix[Mod[#+1, 2]&, rows];
Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
-
{T(n,k)=polcoeff(x^k/prod(j=0,k\2,1-(2*j+k-2*(k\2))^2*x^2 +x*O(x^n)),n)}
A153641
Nonzero coefficients of the Swiss-Knife polynomials for the computation of Euler, tangent, and Bernoulli numbers (triangle read by rows).
Original entry on oeis.org
1, 1, 1, -1, 1, -3, 1, -6, 5, 1, -10, 25, 1, -15, 75, -61, 1, -21, 175, -427, 1, -28, 350, -1708, 1385, 1, -36, 630, -5124, 12465, 1, -45, 1050, -12810, 62325, -50521, 1, -55, 1650, -28182, 228525, -555731, 1, -66, 2475, -56364, 685575, -3334386, 2702765, 1
Offset: 0
1
x
x^2 -1
x^3 -3x
x^4 -6x^2 +5
x^5 -10x^3 +25x
x^6 -15x^4 +75x^2 -61
x^7 -21x^5 +175x^3 -427x
- H. Cohen, Number Theory - Volume II: Analytic and Modern Tools, Graduate Texts in Mathematics. Springer-Verlag. [From Peter Bala, Jun 10 2009]
- G. C. Greubel, Table of n, a(n) for the first 76 rows, flattened
- Ayse Yilmaz Ceylan and Yilmaz Simsek, Formulae for Generalization of Touchard Polynomials with Their Generating Functions, Symmetry (2025) Vol. 17, Issue 7, Art. No. 1126. See Eq. 28 and after.
- Kwang-Wu Chen, Algorithms for Bernoulli numbers and Euler numbers, J. Integer Sequences, 4 (2001), #01.1.6.
- Suyoung Choi and Hanchul Park, A new graph invariant arises in toric topology, arXiv preprint arXiv:1210.3776 [math.AT], 2012.
- Leonhard Euler (1735), De summis serierum reciprocarum, Opera Omnia I.14, E 41, 73-86; On the sums of series of reciprocals, arXiv:math/0506415 [math.HO], 2005-2008.
- A. Hodges and C. V. Sukumar, Bernoulli, Euler, permutations and quantum algebras, Proc. R. Soc. A Oct. 2007 vol 463 no. 463 2086 2401-2414. [Added by Tom Copeland, Aug 31 2015]
- Peter Luschny, The Swiss-Knife polynomials.
- Peter Luschny, Swiss-Knife polynomials and Euler numbers
- Wikipedia, Bernoulli number
- J. Worpitzky, Studien über die Bernoullischen und Eulerschen Zahlen, Journal für die reine und angewandte Mathematik, 94 (1883), 203-232.
W_n(k), k=0,1,...
W_0: 1, 1, 1, 1, 1, 1, ........
A000012
W_1: 0, 1, 2, 3, 4, 5, ........
A001477
W_2: -1, 0, 3, 8, 15, 24, ........
A067998
W_3: 0, -2, 2, 18, 52, 110, ........
A121670
W_4: 5, 0, -3, 32, 165, 480, ........
W_n(k), n=0,1,...
k=0: 1, 0, -1, 0, 5, 0, -61, ...
A122045
k=1: 1, 1, 0, -2, 0, 16, 0, ...
A155585
k=2: 1, 2, 3, 2, -3, 2, 63, ...
A119880
k=3: 1, 3, 8, 18, 32, 48, 128, ...
A119881
k=4: 1, 4, 15, 52, 165, 484, ........ [
Peter Luschny, Jul 07 2009]
-
w := proc(n,x) local v,k,pow,chen; pow := (a,b) -> if a = 0 and b = 0 then 1 else a^b fi; chen := proc(m) if irem(m+1,4) = 0 then RETURN(0) fi; 1/((-1)^iquo(m+1,4) *2^iquo(m,2)) end; add(add((-1)^v*binomial(k,v)*pow(v+x+1,n)*chen(k),v=0..k), k=0..n) end:
# Coefficients with zeros:
seq(print(seq(coeff(i!*coeff(series(exp(x*t)*sech(t),t,16),t,i),x,i-n),n=0..i)), i=0..8);
# Recursion
W := proc(n,z) option remember; local k,p;
if n = 0 then 1 else p := irem(n+1,2);
z^n - p + add(`if`(irem(k,2)=1,0,
W(k,0)*binomial(n,k)*(power(z,n-k)-p)),k=2..n-1) fi end:
# Peter Luschny, edited and additions Jul 07 2009, May 13 2010, Oct 24 2011
-
max = 9; rows = (Reverse[ CoefficientList[ #, x]] & ) /@ CoefficientList[ Series[ Exp[x*t]*Sech[t], {t, 0, max}], t]*Range[0, max]!; par[coefs_] := (p = Partition[ coefs, 2][[All, 1]]; If[ EvenQ[ Length[ coefs]], p, Append[ p, Last[ coefs]]]); Flatten[ par /@ rows] (* Jean-François Alcover, Oct 03 2011, after g.f. *)
sk[n_, x_] := Sum[Binomial[n, k]*EulerE[k]*x^(n-k), {k, 0, n}]; Table[CoefficientList[sk[n, x], x] // Reverse // Select[#, # =!= 0 &] &, {n, 0, 13}] // Flatten (* Jean-François Alcover, May 21 2013 *)
Flatten@Table[Binomial[n, 2k] EulerE[2k], {n, 0, 12}, {k, 0, n/2}](* Oliver Seipel, Jan 14 2025 *)
-
def A046978(k):
if k % 4 == 0:
return 0
return (-1)**(k // 4)
def A153641_poly(n, x):
return expand(add(2**(-(k // 2))*A046978(k+1)*add((-1)**v*binomial(k,v)*(v+x+1)**n for v in (0..k)) for k in (0..n)))
for n in (0..7): print(A153641_poly(n, x)) # Peter Luschny, Oct 24 2011
A119467
A masked Pascal triangle.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 1, 0, 6, 0, 1, 0, 5, 0, 10, 0, 1, 1, 0, 15, 0, 15, 0, 1, 0, 7, 0, 35, 0, 21, 0, 1, 1, 0, 28, 0, 70, 0, 28, 0, 1, 0, 9, 0, 84, 0, 126, 0, 36, 0, 1, 1, 0, 45, 0, 210, 0, 210, 0, 45, 0, 1, 0, 11, 0, 165, 0, 462, 0, 330, 0, 55, 0, 1, 1, 0, 66, 0, 495, 0, 924
Offset: 0
Triangle begins
1,
0, 1,
1, 0, 1,
0, 3, 0, 1,
1, 0, 6, 0, 1,
0, 5, 0, 10, 0, 1,
1, 0, 15, 0, 15, 0, 1,
0, 7, 0, 35, 0, 21, 0, 1,
1, 0, 28, 0, 70, 0, 28, 0, 1,
0, 9, 0, 84, 0, 126, 0, 36, 0, 1,
1, 0, 45, 0, 210, 0, 210, 0, 45, 0, 1
p[0](x) = 1
p[1](x) = x
p[2](x) = 1 + x^2
p[3](x) = 3*x + x^3
p[4](x) = 1 + 6*x^2 + x^4
p[5](x) = 5*x + 10*x^3 + x^5
Connection with A136630: With the arrays M(k) as defined in the Comments section, the infinite product M(0)*M(1)*M(2)*... begins
/1 \/1 \/1 \ /1 \
|0 1 ||0 1 ||0 1 | |0 1 |
|1 0 1 ||0 0 1 ||0 0 1 |... = |1 0 1 |
|0 3 0 1 ||0 1 0 1 ||0 0 0 1 | |0 4 0 1 |
|1 0 6 0 1||0 0 3 0 1||0 0 1 0 1| |1 0 10 0 1|
|... ||... ||... | |... |
- _Peter Bala_, Jul 28 2014
- Paul and Tatjana Ehrenfest, Über zwei bekannte Einwände gegen das Boltzmannsche H-Theorem, Physikalische Zeitschrift, vol. 8 (1907), pp. 311-314.
- Reinhard Zumkeller, Rows n = 0..125 of table, flattened
- Paul Barry, Riordan Arrays, Orthogonal Polynomials as Moments, and Hankel Transforms, J. Int. Seq. 14 (2011) # 11.2.2, example 28.
- Paul Barry, On the inversion of Riordan arrays, arXiv:2101.06713 [math.CO], 2021.
- Tom Copeland, Skipping over Dimensions, Juggling Zeros in the Matrix, 2020.
- D. Dimitrov and P. Rusev, Zeros of entire Fourier transforms, East Journal on Approximations, Vol. 17, No. 1, p. 1-108, 2011.
- Miguel Méndez and Rafael Sánchez, On the combinatorics of Riordan arrays and Sheffer polynomials: monoids, operads and monops, arXiv:1707.00336 [math.CO], 2017, Section 4.3, Example 4.
- Miguel A. Méndez and Rafael Sánchez Lamoneda, Monops, Monoids and Operads: The Combinatorics of Sheffer Polynomials, The Electronic Journal of Combinatorics 25(3) (2018), #P3.25.
- Luca Onnis, Animation of the Ehrenfest model.
- Wikipedia, Ehrenfest model.
- Index entries for triangles and arrays related to Pascal's triangle
p[n](k), n=0,1,...
k= 0: 1, 0, 1, 0, 1, 0, ...
A128174
k= 1: 1, 1, 2, 4, 8, 16, ...
A011782
k= 2: 1, 2, 5, 14, 41, 122, ...
A007051
k= 3: 1, 3, 10, 36, 136, ...
A007582
k= 4: 1, 4, 17, 76, 353, ...
A081186
k= 5: 1, 5, 26, 140, 776, ...
A081187
k= 6: 1, 6, 37, 234, 1513, ...
A081188
k= 7: 1, 7, 50, 364, 2696, ...
A081189
k= 8: 1, 8, 65, 536, 4481, ...
A081190
k= 9: 1, 9, 82, 756, 7048, ...
A060531
k=10: 1, 10, 101, 1030, ...
A081192
p[n](k), k=0,1,...
p[3]: 0,4,14,36,76,140, ..
A079908 (End)
-
a119467 n k = a119467_tabl !! n !! k
a119467_row n = a119467_tabl !! n
a119467_tabl = map (map (flip div 2)) $
zipWith (zipWith (+)) a007318_tabl a130595_tabl
-- Reinhard Zumkeller, Mar 23 2014
-
/* As triangle */ [[Binomial(n, k)*(1 + (-1)^(n - k))/2: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 26 2015
-
# Polynomials: p_n(x)
p := proc(n,x) local k, pow; pow := (n,k) -> `if`(n=0 and k=0,1,n^k);
add((k+1 mod 2)*binomial(n,k)*pow(x,n-k),k=0..n) end;
# Coefficients: a(n)
seq(print(seq(coeff(i!*coeff(series(exp(x*t)*cosh(t),t,16),t,i),x,n),n=0..i)),i=0..8); # Peter Luschny, Jul 14 2009
-
Table[Binomial[n, k] (1 + (-1)^(n - k))/2, {n, 0, 12}, {k, 0, n}] // Flatten (* Michael De Vlieger, Sep 06 2015 *)
n = 15; "n-th row"
mat = Table[Table[0, {j, 1, n + 1}], {i, 1, n + 1}];
mat[[1, 2]] = 1;
mat[[n + 1, n]] = 1;
For[i = 2, i <= n, i++, mat[[i, i - 1]] = (i - 1)/n ];
For[i = 2, i <= n, i++, mat[[i, i + 1]] = (n - i + 1)/n];
mat // MatrixForm;
P2 = Dot[mat, mat];
R1 = Simplify[
Eigenvectors[Transpose[P2]][[1]]/
Total[Eigenvectors[Transpose[P2]][[1]]]]
R2 = Table[Dot[R1, Transpose[mat][[k]]], {k, 1, n + 1}]
odd = R2*2^(n - 1) (* _Luca Onnis *)
-
@CachedFunction
def A119467_poly(n):
R = PolynomialRing(ZZ, 'x')
x = R.gen()
return R.one() if n==0 else R.sum(binomial(n,k)*x^(n-k) for k in range(0,n+1,2))
def A119467_row(n):
return list(A119467_poly(n))
for n in (0..10) : print(A119467_row(n)) # Peter Luschny, Jul 16 2012
A196776
Triangle T(n,k) gives the number of ordered partitions of an n set into k odd-sized blocks.
Original entry on oeis.org
1, 0, 2, 1, 0, 6, 0, 8, 0, 24, 1, 0, 60, 0, 120, 0, 32, 0, 480, 0, 720, 1, 0, 546, 0, 4200, 0, 5040, 0, 128, 0, 8064, 0, 40320, 0, 40320, 1, 0, 4920, 0, 115920, 0, 423360, 0, 362880, 0, 512, 0, 130560, 0, 1693440, 0, 4838400, 0, 3628800
Offset: 1
Triangle begins
.n\k.|..1....2....3....4.....5....6.....7
= = = = = = = = = = = = = = = = = = = = =
..1..|..1
..2..|..0....2
..3..|..1....0....6
..4..|..0....8....0...24
..5..|..1....0...60....0...120
..6..|..0...32....0..480.....0..720
..7..|..1....0..546....0..4200....0..5040
...
T(4,2) = 8: The 8 ordered partitions of the set {1,2,3,4} into 2 odd-sized blocks are {1}{2,3,4}, {2,3,4}{1}, {2}{1,3,4}, {1,3,4}{2}, {3}{1,2,4}, {1,2,4}{3}, {4}{1,2,3} and {1,2,3}{4}.
Example of recurrence relation: T(7,3) = 3^2*T(5,3) + 3*(3-1)*T(5,1) = 9*60 + 6*1 = 546.
A135685
Triangular sequence of the coefficients of the numerator of the rational recursive sequence for tan(n*y) with x = tan(y).
Original entry on oeis.org
0, 0, 1, 0, -2, 0, -3, 0, 1, 0, 4, 0, -4, 0, 5, 0, -10, 0, 1, 0, -6, 0, 20, 0, -6, 0, -7, 0, 35, 0, -21, 0, 1, 0, 8, 0, -56, 0, 56, 0, -8, 0, 9, 0, -84, 0, 126, 0, -36, 0, 1, 0, -10, 0, 120, 0, -252, 0, 120, 0, -10, 0, -11, 0, 165, 0, -462, 0, 330, 0, -55, 0, 1
Offset: 0
Triangle starts:
0;
0, 1;
0, -2;
0, -3, 0, 1;
0, 4, 0, -4;
0, 5, 0, -10, 0, 1;
0, -6, 0, 20, 0, -6;
0, -7, 0, 35, 0, -21, 0, 1;
0, 8, 0, -56, 0, 56, 0, -8;
0, 9, 0, -84, 0, 126, 0, -36, 0, 1;
0, -10, 0, 120, 0, -252, 0, 120, 0, -10;
0, -11, 0, 165, 0, -462, 0, 330, 0, -55, 0, 1;
-
g[0]:= 0:
g[1]:= x;
for n from 2 to 20 do
g[n]:= expand(-2*(-1)^n*g[n-1]+(x^2+1)*g[n-2])
od:
0, seq(seq(coeff(g[n],x,j),j=0..degree(g[n])),n=1..20); # Robert Israel, Sep 14 2014
-
p[n_, x_]:= p[n, x]= If[n<2, n*x, (p[n-1, x] + x)/(1 - x*p[n-1, x])];
Table[CoefficientList[Numerator[FullSimplify[p[n, x]]], x], {n,0,12}]//Flatten
-
def p(n, x): return n*x if (n<2) else 2*(-1)^(n+1)*p(n-1,x) + (1+x^2)*p(n-2,x)
def A135685(n,k): return ( p(n,x) ).series(x,n+1).list()[k]
flatten([[A135685(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Nov 26 2021
Prepended first term and offset corrected by
James Burling, Sep 14 2014
Showing 1-5 of 5 results.
Comments