A162614 Triangle read by rows in which row n lists n+1 terms, starting with n, such that the difference between successive terms is equal to n^3 - 1.
0, 1, 1, 2, 9, 16, 3, 29, 55, 81, 4, 67, 130, 193, 256, 5, 129, 253, 377, 501, 625, 6, 221, 436, 651, 866, 1081, 1296, 7, 349, 691, 1033, 1375, 1717, 2059, 2401, 8, 519, 1030, 1541, 2052, 2563, 3074, 3585, 4096, 9, 737, 1465, 2193, 2921, 3649, 4377, 5105, 5833
Offset: 0
Examples
Triangle begins: 0; 1, 1; 2, 9, 16; 3, 29, 55, 81; 4, 67, 130, 193, 256; 5, 129, 253, 377, 501, 625; 6, 221, 436, 651, 866, 1081, 1296; ...
Crossrefs
Programs
-
Python
def A162614(n,k): return n+k*(n**3-1) print([A162614(n,k) for n in range(20) for k in range(n+1)]) # R. J. Mathar, Oct 20 2009
Formula
Sum_{k=0..n} T(n,k) = n*(n^2-n+1)*(n+1)^2/2 (row sums). - R. J. Mathar, Jul 20 2009
T(n,k) = n + k*(n^3-1). - R. J. Mathar, Oct 20 2009
Extensions
More terms from R. J. Mathar, Oct 20 2009
Comments