cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A159797 Triangle read by rows in which row n lists n+1 terms, starting with n, such that the difference between successive terms is equal to n-1.

Original entry on oeis.org

0, 1, 1, 2, 3, 4, 3, 5, 7, 9, 4, 7, 10, 13, 16, 5, 9, 13, 17, 21, 25, 6, 11, 16, 21, 26, 31, 36, 7, 13, 19, 25, 31, 37, 43, 49, 8, 15, 22, 29, 36, 43, 50, 57, 64, 9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101
Offset: 0

Views

Author

Omar E. Pol, Jul 09 2009

Keywords

Comments

Note that the last term of the n-th row is the n-th square A000290(n).
See also A162611, A162614 and A162622.
The triangle sums, see A180662 for their definitions, link the triangle A159797 with eleven sequences, see the crossrefs. - Johannes W. Meijer, May 20 2011
T(n,k) is the number of distinct sums in the direct sum of {1, 2, ... n} with itself k times for 1 <= k <= n+1, e.g., T(5,3) = the number of distinct sums in the direct sum {1,2,3,4,5} + {1,2,3,4,5} + {1,2,3,4,5}. The sums range from 1+1+1=3 to 5+5+5=15. So there are 13 distinct sums. - Derek Orr, Nov 26 2014

Examples

			Triangle begins:
0;
1, 1;
2, 3, 4;
3, 5, 7, 9;
4, 7,10,13,16;
5, 9,13,17,21,25;
6,11,16,21,26,31,36;
		

Crossrefs

Cf.: A006002 (row sums). - R. J. Mathar, Jul 17 2009
Cf. A163282, A163283, A163284, A163285. - Omar E. Pol, Nov 18 2009
From Johannes W. Meijer, May 20 2011: (Start)
Triangle sums (see the comments): A006002 (Row1), A050187 (Row2), A058187 (Related to Kn11, Kn12, Kn13, Fi1 and Ze1), A006918 (Related to Kn21, Kn22, Kn23, Fi2 and Ze2), A000330 (Kn3), A016061 (Kn4), A190717 (Related to Ca1 and Ze3), A144677 (Related to Ca2 and Ze4), A000292 (Related to Ca3, Ca4, Gi3 and Gi4) A190718 (Related to Gi1) and A144678 (Related to Gi2). (End)

Programs

Formula

Given m = floor( (sqrt(8*n+1)-1)/2 ), then a(n) = m + (n - m*(m+1)/2)*(m-1). - Carl R. White, Jul 24 2010

Extensions

Edited by Omar E. Pol, Jul 18 2009
More terms from Omar E. Pol, Nov 18 2009
More terms from Carl R. White, Jul 24 2010

A162611 Triangle read by rows in which row n lists n+1 terms, starting with n, such that the difference between successive terms is equal to n^2 - 1.

Original entry on oeis.org

0, 1, 1, 2, 5, 8, 3, 11, 19, 27, 4, 19, 34, 49, 64, 5, 29, 53, 77, 101, 125, 6, 41, 76, 111, 146, 181, 216, 7, 55, 103, 151, 199, 247, 295, 343, 8, 71, 134, 197, 260, 323, 386, 449, 512, 9, 89, 169, 249, 329, 409, 489, 569, 649, 729, 10, 109, 208, 307, 406, 505, 604
Offset: 0

Views

Author

Omar E. Pol, Jul 09 2009

Keywords

Comments

Note that the last term of the n-th row is the n-th cube A000578(n).
See also A159797, A162614 and A162622.

Examples

			Triangle begins:
0;
1, 1;
2, 5, 8;
3,11,19,27;
4,19,34,49,64;
5,29,53,77,101,125;
6,41,76,111,146,181,216;
		

Crossrefs

Programs

  • Mathematica
    Flatten[Join[{0,1,1},Table[Range[n,(n+1)(n^2-1),n^2-1],{n,2,10}]]] (* Harvey P. Dale, Jun 18 2014 *)

Extensions

Edited by Omar E. Pol, Jul 18 2009

A162622 Triangle read by rows in which row n lists n+1 terms, starting with n, such that the difference between successive terms is equal to n^4 - 1.

Original entry on oeis.org

0, 1, 1, 2, 17, 32, 3, 83, 163, 243, 4, 259, 514, 769, 1024, 5, 629, 1253, 1877, 2501, 3125, 6, 1301, 2596, 3891, 5186, 6481, 7776, 7, 2407, 4807, 7207, 9607, 12007, 14407, 16807, 8, 4103, 8198, 12293, 16388, 20483, 24578, 28673, 32768, 9, 6569, 13129
Offset: 0

Views

Author

Omar E. Pol, Jul 15 2009

Keywords

Comments

Note that the last term of the n-th row is the 5th power of n, A000584(n).
See also the triangles of A162623 and A162624.

Examples

			Triangle begins:
  0;
  1,    1;
  2,   17,    32;
  3,   83,   163,   243;
  4,  259,   514,   769,  1024;
  5,  629,  1253,  1877,  2501,  3125;
  6, 1301,  2596,  3891,  5186,  6481,  7776;
  7, 2407,  4807,  7207,  9607, 12007, 14407, 16807;
  8, 4103,  8198, 12293, 16388, 20483, 24578, 28673, 32768;
  9, 6569, 13129, 19689, 26249, 32809, 39369, 45929, 52489, 59049; etc.
		

Crossrefs

Programs

  • Magma
    /* Triangle: */ [[n+k*(n^4-1): k in [0..n]]: n in [0..10]]; // Bruno Berselli, Dec 14 2012
  • Maple
    A162622 := proc(n,k) n+k*(n^4-1) ; end proc: seq(seq( A162622(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Feb 11 2010
  • Mathematica
    Flatten[Table[NestList[#+n^4-1&,n,n],{n,0,9}]] (* Harvey P. Dale, Jun 23 2013 *)

Formula

Sum_{k=0..n} T(n,k) = n*(n+1)*(1+n^4)/2 (row sums). [R. J. Mathar, Jul 20 2009]

Extensions

7th and later rows from R. J. Mathar, Feb 11 2010

A162615 Triangle read by rows in which row n lists n terms, starting with n, such that the difference between successive terms is equal to n^3 - 1 = A068601(n).

Original entry on oeis.org

1, 2, 9, 3, 29, 55, 4, 67, 130, 193, 5, 129, 253, 377, 501, 6, 221, 436, 651, 866, 1081, 7, 349, 691, 1033, 1375, 1717, 2059, 8, 519, 1030, 1541, 2052, 2563, 3074, 3585, 9, 737, 1465, 2193, 2921, 3649, 4377, 5105, 5833, 10, 1009, 2008, 3007, 4006, 5005, 6004
Offset: 1

Views

Author

Omar E. Pol, Jul 12 2009

Keywords

Comments

See also the triangles of A162614 and A162616.

Examples

			Triangle begins:
  1;
  2,   9;
  3,  29,  55;
  4,  67, 130, 193;
  5, 129, 253, 377, 501;
  6, 221, 436, 651, 866, 1081;
  ...
		

Crossrefs

Programs

  • Maple
    A162615 := proc(n,k) n+(k-1)*(n^3-1) ; end proc: seq(seq(A162615(n,k),k=1..n),n=1..15) ; # R. J. Mathar, Feb 05 2010
  • Mathematica
    Flatten[Table[c=n^3-1;NestList[#+c&,n,n-1],{n,10}]] (* Harvey P. Dale, Nov 13 2011 *)

Formula

Row sums: n*(n^4 - n^3 + n + 1)/2. - R. J. Mathar, Jul 20 2009

Extensions

Terms beyond the 6th row from R. J. Mathar and Max Alekseyev, Feb 05 2010

A162616 Triangle read by rows in which row n lists n terms, starting with n^3 + n - 1, such that the difference between successive terms is equal to n^3 - 1 = A068601(n).

Original entry on oeis.org

1, 9, 16, 29, 55, 81, 67, 130, 193, 256, 129, 253, 377, 501, 625, 221, 436, 651, 866, 1081, 1296, 349, 691, 1033, 1375, 1717, 2059, 2401, 519, 1030, 1541, 2052, 2563, 3074, 3585, 4096, 737, 1465, 2193, 2921, 3649, 4377, 5105, 5833, 6561, 1009, 2008
Offset: 1

Views

Author

Omar E. Pol, Jul 12 2009

Keywords

Comments

Note that the last term of the n-th row is the fourth power of n, A000583(n).
See also the triangles of A162614 and A162615.

Examples

			Triangle begins:
    1;
    9,  16;
   29,  55,  81;
   67, 130, 193, 256;
  129, 253, 377, 501,  625;
  221, 436, 651, 866, 1081, 1296;
  ...
		

Crossrefs

Programs

  • Maple
    A162616 := proc(n,k) n^3+n-1+(k-1)*(n^3-1) ; end proc: seq(seq(A162616(n,k),k=1..n),n=1..15) ; # R. J. Mathar, Feb 05 2010
  • Mathematica
    Table[NestList[#+n^3-1&,n^3+n-1,n-1],{n,10}]//Flatten (* Harvey P. Dale, Dec 17 2021 *)

Formula

Row sums: n*(n^2 + n - 1)*(n^2+1)/2. - R. J. Mathar, Jul 20 2009

Extensions

More terms from R. J. Mathar, Feb 05 2010

A162624 Triangle read by rows in which row n lists n terms, starting with n^4 + n - 1, such that the difference between successive terms is equal to n^4 - 1 = A123865(n).

Original entry on oeis.org

1, 17, 32, 83, 163, 243, 259, 514, 769, 1024, 629, 1253, 1877, 2501, 3125, 1301, 2596, 3891, 5186, 6481, 7776, 2407, 4807, 7207, 9607, 12007, 14407, 16807, 4103, 8198, 12293, 16388, 20483, 24578, 28673, 32768, 6569, 13129, 19689, 26249, 32809
Offset: 1

Views

Author

Omar E. Pol, Jul 12 2009

Keywords

Comments

Note that the last term of the n-th row is the 5th power of n, A000584(n).
See also the triangles of A162622 and A162623.

Examples

			Triangle begins:
     1;
    17,   32;
    83,  163,  243;
   259,  514,  769, 1024;
   629, 1253, 1877, 2501, 3125;
  1301, 2596, 3891, 5186, 6481, 7776;
  ...
		

Crossrefs

Programs

Formula

Row sums: n*(n^5 + n^4 + n - 1)/2. - R. J. Mathar, Jul 20 2009

A163284 Triangle read by rows in which row n lists n+1 terms, starting with n^4 and ending with n^5, such that the difference between successive terms is equal to n^4 - n^3.

Original entry on oeis.org

0, 1, 1, 16, 24, 32, 81, 135, 189, 243, 256, 448, 640, 832, 1024, 625, 1125, 1625, 2125, 2625, 3125, 1296, 2376, 3456, 4536, 5616, 6696, 7776, 2401, 4459, 6517, 8575, 10633, 12691, 14749, 16807, 4096, 7680, 11264, 14848, 18432, 22016, 25600, 29184, 32768
Offset: 0

Views

Author

Omar E. Pol, Jul 24 2009

Keywords

Comments

The first term of row n is A000583(n) and the last term of row n is A000584(n).

Examples

			Triangle begins:
0;
1,1;
16,24,32;
81,135,189,243;
256,448,640,832,1024;
625,1125,1625,2125,2625,3125;
1296,2376,3456,4536,5616,6696,7776;
2401,4459,6517,8575,10633,12691,14749,16807;
4096,7680,11264,14848,18432,22016,25600,29184,32768;
6561,12393,18225,24057,29889,35721,41553,47385,53217,59049;
10000,19000,28000,37000,46000,55000,64000,73000,82000,91000,100000;
		

Crossrefs

Programs

  • Mathematica
    Table[n^4 + k*(n^4 - n^3), {n,0,15}, {k,0,n}] // Flatten (* G. C. Greubel, Dec 17 2016 *)
  • PARI
    A163284(n, k)=n^4 +k*(n^4 -n^3) \\ G. C. Greubel, Dec 17 2016

A163285 Triangle read by rows in which row n lists n+1 terms, starting with n^5 and ending with n^6, such that the difference between successive terms is equal to n^5 - n^4.

Original entry on oeis.org

0, 1, 1, 32, 48, 64, 243, 405, 567, 729, 1024, 1792, 2560, 3328, 4096, 3125, 5625, 8125, 10625, 13125, 15625, 7776, 14256, 20736, 27216, 33696, 40176, 46656, 16807, 31213, 45619, 60025, 74431, 88837, 103243, 117649, 32768, 61440, 90112, 118784, 147456
Offset: 0

Views

Author

Omar E. Pol, Jul 24 2009

Keywords

Comments

The first term of row n is A000584(n) and the last term of row n is A001014(n).
The main entry for this sequence is A159797. See also A163282, A163283 and A163284.
Row sums give A163275. - Omar E. Pol, Mar 18 2012

Examples

			Triangle begins:
0;
1,1;
32,48,64;
243,405,567,729;
1024,1792,2560,3328,4096;
3125,5625,8125,10625,13125,15625;
7776,14256,20736,27216,33696,40176,46656;
16807,31213,45619,60025,74431,88837,103243,117649;
32768,61440,90112,118784,147456,176128,204800,233472,262144;
59049,111537,164025,216513,269001,321489,373977,426465,478953,531441;
100000,190000,280000,370000,460000,550000,640000,730000,820000,910000,1000000;
		

Crossrefs

Programs

  • Mathematica
    rw[n_]:=Range[n^5,n^6,n^5-n^4]; Join[{0,1},Flatten[Array[rw,10]]] (* Harvey P. Dale, Mar 18 2012 *)
  • PARI
    A163285(n, k)=n^5 +k*(n^5 -n^4) \\ G. C. Greubel, Dec 17 2016

A162608 Triangle read by rows in which row n lists n+1 terms, starting with n!, such that the difference between successive terms is also equal to n!.

Original entry on oeis.org

1, 1, 2, 2, 4, 6, 6, 12, 18, 24, 24, 48, 72, 96, 120, 120, 240, 360, 480, 600, 720, 720, 1440, 2160, 2880, 3600, 4320, 5040, 5040, 10080, 15120, 20160, 25200, 30240, 35280, 40320, 40320, 80640, 120960, 161280, 201600, 241920, 282240, 322560, 362880
Offset: 0

Views

Author

Omar E. Pol, Jul 22 2009

Keywords

Comments

Note that the last term of the n-th row is the factorial of (n+1) = (n+1)! = A000142(n+1).
Sequence A178883 (with shape A000041) is a "refinement" of Table A162608; as expected, both sequences have row sums A001710(n+2). - Alford Arnold, Sep 28 2010
From Dennis P. Walsh, May 18 2020: (Start)
T(n,k) provides the number of length (n+2) permutations with elements 1 and 2 as cycle-mates in a (k+1)-cycle. We note that 1 and 2 are cycle-mates if they are elements of the same cycle in the permutation.
For example, T(3,2) counts the 12 permutations of length 5 that have 1 and 2 in the same 3 cycle, namely, (1 2 3)(4)(5), (1 3 2)(4)(5), (1 2 3)(4 5), (1 3 2)(4 5), (1 2 4)(3)(5), (1 4 2)(3)(5), (1 2 4)(3 5), (1 4 2)(3 5),(1 2 5)(3)(4), (1 5 2)(3)(4), (1 2 5)(3 4), and (1 5 2)(3 4).
Note that there are binomial(n,k-1) ways to choose the other (k-1) cycle-mates of 1 and 2 in the (k+1)-cycle and then k! different (k+1)-cycles with these elements. Since there are (n+1-k)! ways to permute the remaining elements, we obtain T(n,k) = (n+1-k)!*k!*binomial(n,k-1) = n!*k. (End)

Examples

			Triangle begins:
1;
1,     2;
2,     4,     6;
6,     12,    18,     24;
24,    48,    72,     96,     120;
120,   240,   360,    480,    600,    720;
720,   1440,  2160,   2880,   3600,   4320,   5040;
5040,  10080, 15120,  20160,  25200,  30240,  35280,  40320;
40320, 80640, 120960, 161280, 201600, 241920, 282240, 322560, 362880;
362880,725760,1088640,1451520,1814400,2177280,2540160,2903040,3265920,3628800;
...
Observation: It appears that rows sums = A001710(n+2).
		

Crossrefs

Programs

  • Haskell
    a162608 n k = a162608_tabl !! n !! k
    a162608_row n = a162608_tabl !! n
    a162608_tabl = map fst $ iterate f ([1], 1) where
       f (row, n) = (row' ++ [head row' + last row'], n + 1) where
         row' = map (* n) row
    -- Reinhard Zumkeller, Mar 09 2012
    
  • Magma
    /* As triangle */ [[Factorial(n)*k: k in [1..n+1]]: n in [0.. 15]]; // Vincenzo Librandi, Jul 04 2015
  • Mathematica
    Table[k n!, {n, 0, 8}, {k, n + 1}] // Flatten (* Michael De Vlieger, Jul 03 2015 *)

Formula

From Robert Israel, Jul 03 2015: (Start)
T(n,k) = n!*k, k = 1 .. n+1.
T(n+1,k) = (n+1)*T(n,k).
T(n,k+1) = T(n,k)+T(n,1). (End)

A162623 Triangle read by rows in which row n lists n terms, starting with n, such that the difference between successive terms is equal to n^4 - 1 = A123865(n).

Original entry on oeis.org

1, 2, 17, 3, 83, 163, 4, 259, 514, 769, 5, 629, 1253, 1877, 2501, 6, 1301, 2596, 3891, 5186, 6481, 7, 2407, 4807, 7207, 9607, 12007, 14407, 8, 4103, 8198, 12293, 16388, 20483, 24578, 28673, 9, 6569, 13129, 19689, 26249, 32809, 39369, 45929, 52489, 10
Offset: 1

Views

Author

Omar E. Pol, Jul 12 2009

Keywords

Comments

See also the triangles of A162622 and A162624.

Examples

			Triangle begins:
  1;
  2,   17;
  3,   83,  163;
  4,  259,  514,  769;
  5,  629, 1253, 1877, 2501;
  6, 1301, 2596, 3891, 5186, 6481;
		

Crossrefs

Programs

  • Maple
    A162623 := proc(n,k) n+k*(n^4-1) ; end: seq(seq(A162623(n,k),k=0..n-1),n=1..15) ; # R. J. Mathar, Sep 27 2009
  • Mathematica
    dst[n_]:=Module[{c=n^4-1},Range[n,n*c,c]]; Flatten[Join[{1},Table[dst[n],{n,2,10}]]] (* Harvey P. Dale, Jul 29 2014 *)

Formula

Row sums: n*(n^5 - n^4 + n + 1)/2. - R. J. Mathar, Jul 20 2009

Extensions

More terms from R. J. Mathar, Sep 27 2009
Showing 1-10 of 12 results. Next