A162614
Triangle read by rows in which row n lists n+1 terms, starting with n, such that the difference between successive terms is equal to n^3 - 1.
Original entry on oeis.org
0, 1, 1, 2, 9, 16, 3, 29, 55, 81, 4, 67, 130, 193, 256, 5, 129, 253, 377, 501, 625, 6, 221, 436, 651, 866, 1081, 1296, 7, 349, 691, 1033, 1375, 1717, 2059, 2401, 8, 519, 1030, 1541, 2052, 2563, 3074, 3585, 4096, 9, 737, 1465, 2193, 2921, 3649, 4377, 5105, 5833
Offset: 0
Triangle begins:
0;
1, 1;
2, 9, 16;
3, 29, 55, 81;
4, 67, 130, 193, 256;
5, 129, 253, 377, 501, 625;
6, 221, 436, 651, 866, 1081, 1296;
...
Cf.
A000583,
A068601,
A159797,
A162609,
A162610,
A162611,
A162612,
A162613,
A162615,
A162616,
A162622,
A162623,
A162624.
A162622
Triangle read by rows in which row n lists n+1 terms, starting with n, such that the difference between successive terms is equal to n^4 - 1.
Original entry on oeis.org
0, 1, 1, 2, 17, 32, 3, 83, 163, 243, 4, 259, 514, 769, 1024, 5, 629, 1253, 1877, 2501, 3125, 6, 1301, 2596, 3891, 5186, 6481, 7776, 7, 2407, 4807, 7207, 9607, 12007, 14407, 16807, 8, 4103, 8198, 12293, 16388, 20483, 24578, 28673, 32768, 9, 6569, 13129
Offset: 0
Triangle begins:
0;
1, 1;
2, 17, 32;
3, 83, 163, 243;
4, 259, 514, 769, 1024;
5, 629, 1253, 1877, 2501, 3125;
6, 1301, 2596, 3891, 5186, 6481, 7776;
7, 2407, 4807, 7207, 9607, 12007, 14407, 16807;
8, 4103, 8198, 12293, 16388, 20483, 24578, 28673, 32768;
9, 6569, 13129, 19689, 26249, 32809, 39369, 45929, 52489, 59049; etc.
Cf.
A000583,
A000584,
A123865,
A159797,
A162609,
A162610,
A162611,
A162612,
A162613,
A162614,
A162615,
A162616,
A162623,
A162624.
-
/* Triangle: */ [[n+k*(n^4-1): k in [0..n]]: n in [0..10]]; // Bruno Berselli, Dec 14 2012
-
A162622 := proc(n,k) n+k*(n^4-1) ; end proc: seq(seq( A162622(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Feb 11 2010
-
Flatten[Table[NestList[#+n^4-1&,n,n],{n,0,9}]] (* Harvey P. Dale, Jun 23 2013 *)
A162616
Triangle read by rows in which row n lists n terms, starting with n^3 + n - 1, such that the difference between successive terms is equal to n^3 - 1 = A068601(n).
Original entry on oeis.org
1, 9, 16, 29, 55, 81, 67, 130, 193, 256, 129, 253, 377, 501, 625, 221, 436, 651, 866, 1081, 1296, 349, 691, 1033, 1375, 1717, 2059, 2401, 519, 1030, 1541, 2052, 2563, 3074, 3585, 4096, 737, 1465, 2193, 2921, 3649, 4377, 5105, 5833, 6561, 1009, 2008
Offset: 1
Triangle begins:
1;
9, 16;
29, 55, 81;
67, 130, 193, 256;
129, 253, 377, 501, 625;
221, 436, 651, 866, 1081, 1296;
...
-
A162616 := proc(n,k) n^3+n-1+(k-1)*(n^3-1) ; end proc: seq(seq(A162616(n,k),k=1..n),n=1..15) ; # R. J. Mathar, Feb 05 2010
-
Table[NestList[#+n^3-1&,n^3+n-1,n-1],{n,10}]//Flatten (* Harvey P. Dale, Dec 17 2021 *)
A162624
Triangle read by rows in which row n lists n terms, starting with n^4 + n - 1, such that the difference between successive terms is equal to n^4 - 1 = A123865(n).
Original entry on oeis.org
1, 17, 32, 83, 163, 243, 259, 514, 769, 1024, 629, 1253, 1877, 2501, 3125, 1301, 2596, 3891, 5186, 6481, 7776, 2407, 4807, 7207, 9607, 12007, 14407, 16807, 4103, 8198, 12293, 16388, 20483, 24578, 28673, 32768, 6569, 13129, 19689, 26249, 32809
Offset: 1
Triangle begins:
1;
17, 32;
83, 163, 243;
259, 514, 769, 1024;
629, 1253, 1877, 2501, 3125;
1301, 2596, 3891, 5186, 6481, 7776;
...
Cf.
A000584,
A123865,
A159797,
A162609,
A162610,
A162611,
A162612,
A162613,
A162614,
A162615,
A162616,
A162622,
A162623.
-
A162624 := proc(n,k) return n+k*(n^4-1): end: seq(seq(A162624(n,k), k=1..n), n=1..10); # Nathaniel Johnston, Apr 30 2011
-
Table[NestList[#+n^4-1&,n^4+n-1,n-1],{n,10}]//Flatten (* Harvey P. Dale, Apr 28 2022 *)
A162623
Triangle read by rows in which row n lists n terms, starting with n, such that the difference between successive terms is equal to n^4 - 1 = A123865(n).
Original entry on oeis.org
1, 2, 17, 3, 83, 163, 4, 259, 514, 769, 5, 629, 1253, 1877, 2501, 6, 1301, 2596, 3891, 5186, 6481, 7, 2407, 4807, 7207, 9607, 12007, 14407, 8, 4103, 8198, 12293, 16388, 20483, 24578, 28673, 9, 6569, 13129, 19689, 26249, 32809, 39369, 45929, 52489, 10
Offset: 1
Triangle begins:
1;
2, 17;
3, 83, 163;
4, 259, 514, 769;
5, 629, 1253, 1877, 2501;
6, 1301, 2596, 3891, 5186, 6481;
Cf.
A000583,
A000584,
A123865,
A159797,
A162609,
A162610,
A162611,
A162612,
A162613,
A162614,
A162615,
A162616,
A162622,
A162624.
-
A162623 := proc(n,k) n+k*(n^4-1) ; end: seq(seq(A162623(n,k),k=0..n-1),n=1..15) ; # R. J. Mathar, Sep 27 2009
-
dst[n_]:=Module[{c=n^4-1},Range[n,n*c,c]]; Flatten[Join[{1},Table[dst[n],{n,2,10}]]] (* Harvey P. Dale, Jul 29 2014 *)
Showing 1-5 of 5 results.
Comments