cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A162614 Triangle read by rows in which row n lists n+1 terms, starting with n, such that the difference between successive terms is equal to n^3 - 1.

Original entry on oeis.org

0, 1, 1, 2, 9, 16, 3, 29, 55, 81, 4, 67, 130, 193, 256, 5, 129, 253, 377, 501, 625, 6, 221, 436, 651, 866, 1081, 1296, 7, 349, 691, 1033, 1375, 1717, 2059, 2401, 8, 519, 1030, 1541, 2052, 2563, 3074, 3585, 4096, 9, 737, 1465, 2193, 2921, 3649, 4377, 5105, 5833
Offset: 0

Views

Author

Omar E. Pol, Jul 15 2009

Keywords

Comments

Note that the last term of the n-th row is the fourth power of n, A000583(n).
See also the triangles of A162615 and A162616.

Examples

			Triangle begins:
  0;
  1,   1;
  2,   9,  16;
  3,  29,  55,  81;
  4,  67, 130, 193, 256;
  5, 129, 253, 377, 501,  625;
  6, 221, 436, 651, 866, 1081, 1296;
  ...
		

Crossrefs

Programs

  • Python
    def A162614(n,k):
        return n+k*(n**3-1)
    print([A162614(n,k) for n in range(20) for k in range(n+1)])
    # R. J. Mathar, Oct 20 2009

Formula

Sum_{k=0..n} T(n,k) = n*(n^2-n+1)*(n+1)^2/2 (row sums). - R. J. Mathar, Jul 20 2009
T(n,k) = n + k*(n^3-1). - R. J. Mathar, Oct 20 2009

Extensions

More terms from R. J. Mathar, Oct 20 2009

A162622 Triangle read by rows in which row n lists n+1 terms, starting with n, such that the difference between successive terms is equal to n^4 - 1.

Original entry on oeis.org

0, 1, 1, 2, 17, 32, 3, 83, 163, 243, 4, 259, 514, 769, 1024, 5, 629, 1253, 1877, 2501, 3125, 6, 1301, 2596, 3891, 5186, 6481, 7776, 7, 2407, 4807, 7207, 9607, 12007, 14407, 16807, 8, 4103, 8198, 12293, 16388, 20483, 24578, 28673, 32768, 9, 6569, 13129
Offset: 0

Views

Author

Omar E. Pol, Jul 15 2009

Keywords

Comments

Note that the last term of the n-th row is the 5th power of n, A000584(n).
See also the triangles of A162623 and A162624.

Examples

			Triangle begins:
  0;
  1,    1;
  2,   17,    32;
  3,   83,   163,   243;
  4,  259,   514,   769,  1024;
  5,  629,  1253,  1877,  2501,  3125;
  6, 1301,  2596,  3891,  5186,  6481,  7776;
  7, 2407,  4807,  7207,  9607, 12007, 14407, 16807;
  8, 4103,  8198, 12293, 16388, 20483, 24578, 28673, 32768;
  9, 6569, 13129, 19689, 26249, 32809, 39369, 45929, 52489, 59049; etc.
		

Crossrefs

Programs

  • Magma
    /* Triangle: */ [[n+k*(n^4-1): k in [0..n]]: n in [0..10]]; // Bruno Berselli, Dec 14 2012
  • Maple
    A162622 := proc(n,k) n+k*(n^4-1) ; end proc: seq(seq( A162622(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Feb 11 2010
  • Mathematica
    Flatten[Table[NestList[#+n^4-1&,n,n],{n,0,9}]] (* Harvey P. Dale, Jun 23 2013 *)

Formula

Sum_{k=0..n} T(n,k) = n*(n+1)*(1+n^4)/2 (row sums). [R. J. Mathar, Jul 20 2009]

Extensions

7th and later rows from R. J. Mathar, Feb 11 2010

A162616 Triangle read by rows in which row n lists n terms, starting with n^3 + n - 1, such that the difference between successive terms is equal to n^3 - 1 = A068601(n).

Original entry on oeis.org

1, 9, 16, 29, 55, 81, 67, 130, 193, 256, 129, 253, 377, 501, 625, 221, 436, 651, 866, 1081, 1296, 349, 691, 1033, 1375, 1717, 2059, 2401, 519, 1030, 1541, 2052, 2563, 3074, 3585, 4096, 737, 1465, 2193, 2921, 3649, 4377, 5105, 5833, 6561, 1009, 2008
Offset: 1

Views

Author

Omar E. Pol, Jul 12 2009

Keywords

Comments

Note that the last term of the n-th row is the fourth power of n, A000583(n).
See also the triangles of A162614 and A162615.

Examples

			Triangle begins:
    1;
    9,  16;
   29,  55,  81;
   67, 130, 193, 256;
  129, 253, 377, 501,  625;
  221, 436, 651, 866, 1081, 1296;
  ...
		

Crossrefs

Programs

  • Maple
    A162616 := proc(n,k) n^3+n-1+(k-1)*(n^3-1) ; end proc: seq(seq(A162616(n,k),k=1..n),n=1..15) ; # R. J. Mathar, Feb 05 2010
  • Mathematica
    Table[NestList[#+n^3-1&,n^3+n-1,n-1],{n,10}]//Flatten (* Harvey P. Dale, Dec 17 2021 *)

Formula

Row sums: n*(n^2 + n - 1)*(n^2+1)/2. - R. J. Mathar, Jul 20 2009

Extensions

More terms from R. J. Mathar, Feb 05 2010

A162624 Triangle read by rows in which row n lists n terms, starting with n^4 + n - 1, such that the difference between successive terms is equal to n^4 - 1 = A123865(n).

Original entry on oeis.org

1, 17, 32, 83, 163, 243, 259, 514, 769, 1024, 629, 1253, 1877, 2501, 3125, 1301, 2596, 3891, 5186, 6481, 7776, 2407, 4807, 7207, 9607, 12007, 14407, 16807, 4103, 8198, 12293, 16388, 20483, 24578, 28673, 32768, 6569, 13129, 19689, 26249, 32809
Offset: 1

Views

Author

Omar E. Pol, Jul 12 2009

Keywords

Comments

Note that the last term of the n-th row is the 5th power of n, A000584(n).
See also the triangles of A162622 and A162623.

Examples

			Triangle begins:
     1;
    17,   32;
    83,  163,  243;
   259,  514,  769, 1024;
   629, 1253, 1877, 2501, 3125;
  1301, 2596, 3891, 5186, 6481, 7776;
  ...
		

Crossrefs

Programs

Formula

Row sums: n*(n^5 + n^4 + n - 1)/2. - R. J. Mathar, Jul 20 2009

A162623 Triangle read by rows in which row n lists n terms, starting with n, such that the difference between successive terms is equal to n^4 - 1 = A123865(n).

Original entry on oeis.org

1, 2, 17, 3, 83, 163, 4, 259, 514, 769, 5, 629, 1253, 1877, 2501, 6, 1301, 2596, 3891, 5186, 6481, 7, 2407, 4807, 7207, 9607, 12007, 14407, 8, 4103, 8198, 12293, 16388, 20483, 24578, 28673, 9, 6569, 13129, 19689, 26249, 32809, 39369, 45929, 52489, 10
Offset: 1

Views

Author

Omar E. Pol, Jul 12 2009

Keywords

Comments

See also the triangles of A162622 and A162624.

Examples

			Triangle begins:
  1;
  2,   17;
  3,   83,  163;
  4,  259,  514,  769;
  5,  629, 1253, 1877, 2501;
  6, 1301, 2596, 3891, 5186, 6481;
		

Crossrefs

Programs

  • Maple
    A162623 := proc(n,k) n+k*(n^4-1) ; end: seq(seq(A162623(n,k),k=0..n-1),n=1..15) ; # R. J. Mathar, Sep 27 2009
  • Mathematica
    dst[n_]:=Module[{c=n^4-1},Range[n,n*c,c]]; Flatten[Join[{1},Table[dst[n],{n,2,10}]]] (* Harvey P. Dale, Jul 29 2014 *)

Formula

Row sums: n*(n^5 - n^4 + n + 1)/2. - R. J. Mathar, Jul 20 2009

Extensions

More terms from R. J. Mathar, Sep 27 2009
Showing 1-5 of 5 results.