A162614
Triangle read by rows in which row n lists n+1 terms, starting with n, such that the difference between successive terms is equal to n^3 - 1.
Original entry on oeis.org
0, 1, 1, 2, 9, 16, 3, 29, 55, 81, 4, 67, 130, 193, 256, 5, 129, 253, 377, 501, 625, 6, 221, 436, 651, 866, 1081, 1296, 7, 349, 691, 1033, 1375, 1717, 2059, 2401, 8, 519, 1030, 1541, 2052, 2563, 3074, 3585, 4096, 9, 737, 1465, 2193, 2921, 3649, 4377, 5105, 5833
Offset: 0
Triangle begins:
0;
1, 1;
2, 9, 16;
3, 29, 55, 81;
4, 67, 130, 193, 256;
5, 129, 253, 377, 501, 625;
6, 221, 436, 651, 866, 1081, 1296;
...
Cf.
A000583,
A068601,
A159797,
A162609,
A162610,
A162611,
A162612,
A162613,
A162615,
A162616,
A162622,
A162623,
A162624.
A162622
Triangle read by rows in which row n lists n+1 terms, starting with n, such that the difference between successive terms is equal to n^4 - 1.
Original entry on oeis.org
0, 1, 1, 2, 17, 32, 3, 83, 163, 243, 4, 259, 514, 769, 1024, 5, 629, 1253, 1877, 2501, 3125, 6, 1301, 2596, 3891, 5186, 6481, 7776, 7, 2407, 4807, 7207, 9607, 12007, 14407, 16807, 8, 4103, 8198, 12293, 16388, 20483, 24578, 28673, 32768, 9, 6569, 13129
Offset: 0
Triangle begins:
0;
1, 1;
2, 17, 32;
3, 83, 163, 243;
4, 259, 514, 769, 1024;
5, 629, 1253, 1877, 2501, 3125;
6, 1301, 2596, 3891, 5186, 6481, 7776;
7, 2407, 4807, 7207, 9607, 12007, 14407, 16807;
8, 4103, 8198, 12293, 16388, 20483, 24578, 28673, 32768;
9, 6569, 13129, 19689, 26249, 32809, 39369, 45929, 52489, 59049; etc.
Cf.
A000583,
A000584,
A123865,
A159797,
A162609,
A162610,
A162611,
A162612,
A162613,
A162614,
A162615,
A162616,
A162623,
A162624.
-
/* Triangle: */ [[n+k*(n^4-1): k in [0..n]]: n in [0..10]]; // Bruno Berselli, Dec 14 2012
-
A162622 := proc(n,k) n+k*(n^4-1) ; end proc: seq(seq( A162622(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Feb 11 2010
-
Flatten[Table[NestList[#+n^4-1&,n,n],{n,0,9}]] (* Harvey P. Dale, Jun 23 2013 *)
A177342
a(n) = (4*n^3-3*n^2+5*n-3)/3.
Original entry on oeis.org
1, 9, 31, 75, 149, 261, 419, 631, 905, 1249, 1671, 2179, 2781, 3485, 4299, 5231, 6289, 7481, 8815, 10299, 11941, 13749, 15731, 17895, 20249, 22801, 25559, 28531, 31725, 35149, 38811, 42719, 46881, 51305, 55999, 60971, 66229, 71781, 77635
Offset: 1
-
[(4*n^3-3*n^2+5*n-3)/3: n in [1..39]]; // Bruno Berselli, Aug 24 2011
-
I:=[1,9,31,75]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Aug 19 2013
-
CoefficientList[Series[(1 + 5 x + x^2 + x^3) / (1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 19 2013 *)
Table[(4 n^3 - 3 n^2 + 5 n - 3)/3, {n, 1, 40}] (* Bruno Berselli, Feb 17 2015 *)
LinearRecurrence[{4,-6,4,-1},{1,9,31,75},40] (* Harvey P. Dale, Jul 31 2021 *)
-
a(n)=(4*n^3-3*n^2+5*n-3)/3 \\ Charles R Greathouse IV, Jun 23 2011
A162624
Triangle read by rows in which row n lists n terms, starting with n^4 + n - 1, such that the difference between successive terms is equal to n^4 - 1 = A123865(n).
Original entry on oeis.org
1, 17, 32, 83, 163, 243, 259, 514, 769, 1024, 629, 1253, 1877, 2501, 3125, 1301, 2596, 3891, 5186, 6481, 7776, 2407, 4807, 7207, 9607, 12007, 14407, 16807, 4103, 8198, 12293, 16388, 20483, 24578, 28673, 32768, 6569, 13129, 19689, 26249, 32809
Offset: 1
Triangle begins:
1;
17, 32;
83, 163, 243;
259, 514, 769, 1024;
629, 1253, 1877, 2501, 3125;
1301, 2596, 3891, 5186, 6481, 7776;
...
Cf.
A000584,
A123865,
A159797,
A162609,
A162610,
A162611,
A162612,
A162613,
A162614,
A162615,
A162616,
A162622,
A162623.
-
A162624 := proc(n,k) return n+k*(n^4-1): end: seq(seq(A162624(n,k), k=1..n), n=1..10); # Nathaniel Johnston, Apr 30 2011
-
Table[NestList[#+n^4-1&,n^4+n-1,n-1],{n,10}]//Flatten (* Harvey P. Dale, Apr 28 2022 *)
Showing 1-4 of 4 results.
Comments