A159797
Triangle read by rows in which row n lists n+1 terms, starting with n, such that the difference between successive terms is equal to n-1.
Original entry on oeis.org
0, 1, 1, 2, 3, 4, 3, 5, 7, 9, 4, 7, 10, 13, 16, 5, 9, 13, 17, 21, 25, 6, 11, 16, 21, 26, 31, 36, 7, 13, 19, 25, 31, 37, 43, 49, 8, 15, 22, 29, 36, 43, 50, 57, 64, 9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101
Offset: 0
Triangle begins:
0;
1, 1;
2, 3, 4;
3, 5, 7, 9;
4, 7,10,13,16;
5, 9,13,17,21,25;
6,11,16,21,26,31,36;
Triangle sums (see the comments):
A006002 (Row1),
A050187 (Row2),
A058187 (Related to Kn11, Kn12, Kn13, Fi1 and Ze1),
A006918 (Related to Kn21, Kn22, Kn23, Fi2 and Ze2),
A000330 (Kn3),
A016061 (Kn4),
A190717 (Related to Ca1 and Ze3),
A144677 (Related to Ca2 and Ze4),
A000292 (Related to Ca3, Ca4, Gi3 and Gi4)
A190718 (Related to Gi1) and
A144678 (Related to Gi2). (End)
A162611
Triangle read by rows in which row n lists n+1 terms, starting with n, such that the difference between successive terms is equal to n^2 - 1.
Original entry on oeis.org
0, 1, 1, 2, 5, 8, 3, 11, 19, 27, 4, 19, 34, 49, 64, 5, 29, 53, 77, 101, 125, 6, 41, 76, 111, 146, 181, 216, 7, 55, 103, 151, 199, 247, 295, 343, 8, 71, 134, 197, 260, 323, 386, 449, 512, 9, 89, 169, 249, 329, 409, 489, 569, 649, 729, 10, 109, 208, 307, 406, 505, 604
Offset: 0
Triangle begins:
0;
1, 1;
2, 5, 8;
3,11,19,27;
4,19,34,49,64;
5,29,53,77,101,125;
6,41,76,111,146,181,216;
-
Flatten[Join[{0,1,1},Table[Range[n,(n+1)(n^2-1),n^2-1],{n,2,10}]]] (* Harvey P. Dale, Jun 18 2014 *)
A162614
Triangle read by rows in which row n lists n+1 terms, starting with n, such that the difference between successive terms is equal to n^3 - 1.
Original entry on oeis.org
0, 1, 1, 2, 9, 16, 3, 29, 55, 81, 4, 67, 130, 193, 256, 5, 129, 253, 377, 501, 625, 6, 221, 436, 651, 866, 1081, 1296, 7, 349, 691, 1033, 1375, 1717, 2059, 2401, 8, 519, 1030, 1541, 2052, 2563, 3074, 3585, 4096, 9, 737, 1465, 2193, 2921, 3649, 4377, 5105, 5833
Offset: 0
Triangle begins:
0;
1, 1;
2, 9, 16;
3, 29, 55, 81;
4, 67, 130, 193, 256;
5, 129, 253, 377, 501, 625;
6, 221, 436, 651, 866, 1081, 1296;
...
Cf.
A000583,
A068601,
A159797,
A162609,
A162610,
A162611,
A162612,
A162613,
A162615,
A162616,
A162622,
A162623,
A162624.
A177342
a(n) = (4*n^3-3*n^2+5*n-3)/3.
Original entry on oeis.org
1, 9, 31, 75, 149, 261, 419, 631, 905, 1249, 1671, 2179, 2781, 3485, 4299, 5231, 6289, 7481, 8815, 10299, 11941, 13749, 15731, 17895, 20249, 22801, 25559, 28531, 31725, 35149, 38811, 42719, 46881, 51305, 55999, 60971, 66229, 71781, 77635
Offset: 1
-
[(4*n^3-3*n^2+5*n-3)/3: n in [1..39]]; // Bruno Berselli, Aug 24 2011
-
I:=[1,9,31,75]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Aug 19 2013
-
CoefficientList[Series[(1 + 5 x + x^2 + x^3) / (1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 19 2013 *)
Table[(4 n^3 - 3 n^2 + 5 n - 3)/3, {n, 1, 40}] (* Bruno Berselli, Feb 17 2015 *)
LinearRecurrence[{4,-6,4,-1},{1,9,31,75},40] (* Harvey P. Dale, Jul 31 2021 *)
-
a(n)=(4*n^3-3*n^2+5*n-3)/3 \\ Charles R Greathouse IV, Jun 23 2011
A162624
Triangle read by rows in which row n lists n terms, starting with n^4 + n - 1, such that the difference between successive terms is equal to n^4 - 1 = A123865(n).
Original entry on oeis.org
1, 17, 32, 83, 163, 243, 259, 514, 769, 1024, 629, 1253, 1877, 2501, 3125, 1301, 2596, 3891, 5186, 6481, 7776, 2407, 4807, 7207, 9607, 12007, 14407, 16807, 4103, 8198, 12293, 16388, 20483, 24578, 28673, 32768, 6569, 13129, 19689, 26249, 32809
Offset: 1
Triangle begins:
1;
17, 32;
83, 163, 243;
259, 514, 769, 1024;
629, 1253, 1877, 2501, 3125;
1301, 2596, 3891, 5186, 6481, 7776;
...
Cf.
A000584,
A123865,
A159797,
A162609,
A162610,
A162611,
A162612,
A162613,
A162614,
A162615,
A162616,
A162622,
A162623.
-
A162624 := proc(n,k) return n+k*(n^4-1): end: seq(seq(A162624(n,k), k=1..n), n=1..10); # Nathaniel Johnston, Apr 30 2011
-
Table[NestList[#+n^4-1&,n^4+n-1,n-1],{n,10}]//Flatten (* Harvey P. Dale, Apr 28 2022 *)
A163284
Triangle read by rows in which row n lists n+1 terms, starting with n^4 and ending with n^5, such that the difference between successive terms is equal to n^4 - n^3.
Original entry on oeis.org
0, 1, 1, 16, 24, 32, 81, 135, 189, 243, 256, 448, 640, 832, 1024, 625, 1125, 1625, 2125, 2625, 3125, 1296, 2376, 3456, 4536, 5616, 6696, 7776, 2401, 4459, 6517, 8575, 10633, 12691, 14749, 16807, 4096, 7680, 11264, 14848, 18432, 22016, 25600, 29184, 32768
Offset: 0
Triangle begins:
0;
1,1;
16,24,32;
81,135,189,243;
256,448,640,832,1024;
625,1125,1625,2125,2625,3125;
1296,2376,3456,4536,5616,6696,7776;
2401,4459,6517,8575,10633,12691,14749,16807;
4096,7680,11264,14848,18432,22016,25600,29184,32768;
6561,12393,18225,24057,29889,35721,41553,47385,53217,59049;
10000,19000,28000,37000,46000,55000,64000,73000,82000,91000,100000;
A163285
Triangle read by rows in which row n lists n+1 terms, starting with n^5 and ending with n^6, such that the difference between successive terms is equal to n^5 - n^4.
Original entry on oeis.org
0, 1, 1, 32, 48, 64, 243, 405, 567, 729, 1024, 1792, 2560, 3328, 4096, 3125, 5625, 8125, 10625, 13125, 15625, 7776, 14256, 20736, 27216, 33696, 40176, 46656, 16807, 31213, 45619, 60025, 74431, 88837, 103243, 117649, 32768, 61440, 90112, 118784, 147456
Offset: 0
Triangle begins:
0;
1,1;
32,48,64;
243,405,567,729;
1024,1792,2560,3328,4096;
3125,5625,8125,10625,13125,15625;
7776,14256,20736,27216,33696,40176,46656;
16807,31213,45619,60025,74431,88837,103243,117649;
32768,61440,90112,118784,147456,176128,204800,233472,262144;
59049,111537,164025,216513,269001,321489,373977,426465,478953,531441;
100000,190000,280000,370000,460000,550000,640000,730000,820000,910000,1000000;
A162608
Triangle read by rows in which row n lists n+1 terms, starting with n!, such that the difference between successive terms is also equal to n!.
Original entry on oeis.org
1, 1, 2, 2, 4, 6, 6, 12, 18, 24, 24, 48, 72, 96, 120, 120, 240, 360, 480, 600, 720, 720, 1440, 2160, 2880, 3600, 4320, 5040, 5040, 10080, 15120, 20160, 25200, 30240, 35280, 40320, 40320, 80640, 120960, 161280, 201600, 241920, 282240, 322560, 362880
Offset: 0
Triangle begins:
1;
1, 2;
2, 4, 6;
6, 12, 18, 24;
24, 48, 72, 96, 120;
120, 240, 360, 480, 600, 720;
720, 1440, 2160, 2880, 3600, 4320, 5040;
5040, 10080, 15120, 20160, 25200, 30240, 35280, 40320;
40320, 80640, 120960, 161280, 201600, 241920, 282240, 322560, 362880;
362880,725760,1088640,1451520,1814400,2177280,2540160,2903040,3265920,3628800;
...
Observation: It appears that rows sums = A001710(n+2).
-
a162608 n k = a162608_tabl !! n !! k
a162608_row n = a162608_tabl !! n
a162608_tabl = map fst $ iterate f ([1], 1) where
f (row, n) = (row' ++ [head row' + last row'], n + 1) where
row' = map (* n) row
-- Reinhard Zumkeller, Mar 09 2012
-
/* As triangle */ [[Factorial(n)*k: k in [1..n+1]]: n in [0.. 15]]; // Vincenzo Librandi, Jul 04 2015
-
Table[k n!, {n, 0, 8}, {k, n + 1}] // Flatten (* Michael De Vlieger, Jul 03 2015 *)
A162623
Triangle read by rows in which row n lists n terms, starting with n, such that the difference between successive terms is equal to n^4 - 1 = A123865(n).
Original entry on oeis.org
1, 2, 17, 3, 83, 163, 4, 259, 514, 769, 5, 629, 1253, 1877, 2501, 6, 1301, 2596, 3891, 5186, 6481, 7, 2407, 4807, 7207, 9607, 12007, 14407, 8, 4103, 8198, 12293, 16388, 20483, 24578, 28673, 9, 6569, 13129, 19689, 26249, 32809, 39369, 45929, 52489, 10
Offset: 1
Triangle begins:
1;
2, 17;
3, 83, 163;
4, 259, 514, 769;
5, 629, 1253, 1877, 2501;
6, 1301, 2596, 3891, 5186, 6481;
Cf.
A000583,
A000584,
A123865,
A159797,
A162609,
A162610,
A162611,
A162612,
A162613,
A162614,
A162615,
A162616,
A162622,
A162624.
-
A162623 := proc(n,k) n+k*(n^4-1) ; end: seq(seq(A162623(n,k),k=0..n-1),n=1..15) ; # R. J. Mathar, Sep 27 2009
-
dst[n_]:=Module[{c=n^4-1},Range[n,n*c,c]]; Flatten[Join[{1},Table[dst[n],{n,2,10}]]] (* Harvey P. Dale, Jul 29 2014 *)
A162618
Triangle read by rows in which row n lists n consecutive natural numbers A000027, starting with A008578(n-1) - n + 1.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 2, 3, 4, 5, 3, 4, 5, 6, 7, 6, 7, 8, 9, 10, 11, 7, 8, 9, 10, 11, 12, 13, 10, 11, 12, 13, 14, 15, 16, 17, 11, 12, 13, 14, 15, 16, 17, 18, 19, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
Offset: 1
Contribution from _Omar E. Pol_, Jul 15 2009: (Start)
Triangle begins:
1;
1, 2;
1, 2, 3;
2, 3, 4, 5;
3, 4, 5, 6, 7;
6, 7, 8, 9, 10, 11;
7, 8, 9, 10, 11, 12, 13;
10, 11, 12, 13, 14, 15, 16, 17;
11, 12, 13, 14, 15, 16, 17, 18, 19;
14, 15, 16, 17, 18, 19, 20, 21, 22, 23;
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29;
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31;
(End)
Showing 1-10 of 10 results.
Comments