A162616 Triangle read by rows in which row n lists n terms, starting with n^3 + n - 1, such that the difference between successive terms is equal to n^3 - 1 = A068601(n).
1, 9, 16, 29, 55, 81, 67, 130, 193, 256, 129, 253, 377, 501, 625, 221, 436, 651, 866, 1081, 1296, 349, 691, 1033, 1375, 1717, 2059, 2401, 519, 1030, 1541, 2052, 2563, 3074, 3585, 4096, 737, 1465, 2193, 2921, 3649, 4377, 5105, 5833, 6561, 1009, 2008
Offset: 1
Examples
Triangle begins: 1; 9, 16; 29, 55, 81; 67, 130, 193, 256; 129, 253, 377, 501, 625; 221, 436, 651, 866, 1081, 1296; ...
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
A162616 := proc(n,k) n^3+n-1+(k-1)*(n^3-1) ; end proc: seq(seq(A162616(n,k),k=1..n),n=1..15) ; # R. J. Mathar, Feb 05 2010
-
Mathematica
Table[NestList[#+n^3-1&,n^3+n-1,n-1],{n,10}]//Flatten (* Harvey P. Dale, Dec 17 2021 *)
Formula
Row sums: n*(n^2 + n - 1)*(n^2+1)/2. - R. J. Mathar, Jul 20 2009
Extensions
More terms from R. J. Mathar, Feb 05 2010
Comments