A162624 Triangle read by rows in which row n lists n terms, starting with n^4 + n - 1, such that the difference between successive terms is equal to n^4 - 1 = A123865(n).
1, 17, 32, 83, 163, 243, 259, 514, 769, 1024, 629, 1253, 1877, 2501, 3125, 1301, 2596, 3891, 5186, 6481, 7776, 2407, 4807, 7207, 9607, 12007, 14407, 16807, 4103, 8198, 12293, 16388, 20483, 24578, 28673, 32768, 6569, 13129, 19689, 26249, 32809
Offset: 1
Examples
Triangle begins: 1; 17, 32; 83, 163, 243; 259, 514, 769, 1024; 629, 1253, 1877, 2501, 3125; 1301, 2596, 3891, 5186, 6481, 7776; ...
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
A162624 := proc(n,k) return n+k*(n^4-1): end: seq(seq(A162624(n,k), k=1..n), n=1..10); # Nathaniel Johnston, Apr 30 2011
-
Mathematica
Table[NestList[#+n^4-1&,n^4+n-1,n-1],{n,10}]//Flatten (* Harvey P. Dale, Apr 28 2022 *)
Formula
Row sums: n*(n^5 + n^4 + n - 1)/2. - R. J. Mathar, Jul 20 2009
Comments