cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162628 G.f. is the polynomial (1-x^3) * (1-x^6) * (1-x^9) * (1-x^12) * (1-x^15) * (1-x^18) * (1-x^21) * (1-x^24) * (1-x^27) * (1-x^30) * (1-x^33) / (1-x)^11.

Original entry on oeis.org

1, 11, 66, 285, 990, 2937, 7721, 18436, 40689, 84084, 164307, 305955, 546260, 939862, 1564782, 2529737, 3982924, 6122379, 9207990, 13575210, 19650477, 27968304, 39189954, 54123564, 73745529, 99222903, 131936520, 173504485
Offset: 0

Views

Author

N. J. A. Sloane, Dec 02 2009

Keywords

Comments

This is a row of the triangle in A162499. Only finitely many terms are nonzero.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1- x^18)*(1-x^21)*(1-x^24)*(1-x^27)*(1-x^30)*(1-x^33)/(1-x)^11)); // G. C. Greubel, Jul 06 2018
  • Mathematica
    CoefficientList[ Series[Times @@ (1 - x^(3 Range@11))/(1 - x)^11, {x, 0, 70}], x] (* G. C. Greubel, Jul 06 2018 and slightly modified by Robert G. Wilson v, Jul 23 2018 *)
  • PARI
    x='x+O('x^50); Vec((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1- x^18)*(1-x^21)*(1-x^24)*(1-x^27)*(1-x^30)*(1-x^33)/(1-x)^11) \\ G. C. Greubel, Jul 06 2018