A162652 Primes p such that there are positive integers m and n and a prime q such that p = m^2+m-q = n^2+n+q.
7, 13, 31, 43, 73, 211, 241, 421, 463, 1123, 1723, 2551, 2971, 4831, 5701, 6163, 8011, 8191, 9901, 11131, 12433, 14281, 17293, 19183, 20023, 23563, 24181, 28393, 30103, 31153, 35911, 37831, 43891, 46441, 53593, 60271, 77563, 83233, 86143, 95791
Offset: 1
Keywords
Examples
7 = 1^2+1+5 = 3^2+3-5.
Links
- Jean-François Alcover, Table of n, a(n) for n = 1..77
Crossrefs
Cf. A163418. - R. J. Mathar, Feb 05 2010
Programs
-
Maple
isA002378 := proc(n) if n >= 0 then if issqr(4*n+1) then RETURN(type( sqrt(4*n+1),'odd')) ; else false; fi; else false; fi; end: # primes p such there is a prime q
A162652 := proc(p) local j,q; if isprime(p) then for j from 1 do q := ithprime(j) ; if q >= p then break; fi; if isA002378(p+q) and isA002378(p-q) then RETURN(true) ; fi; od: false ; else false; fi; end: for n from 1 to 4000 do if isA162652(ithprime(n)) then printf("%d,",ithprime(n)) ; fi; od; # R. J. Mathar, Jul 17 2009
-
Mathematica
sol[p_] := m^2 + m - p /. Solve[m>0 && n>0 && 2p == m + m^2 + n + n^2, {m, n}, Integers]; Reap[For[p = 2, p < 10^6, p = NextPrime[p], qsel = Select[sol[p], PrimeQ]; If[qsel != {}, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Mar 25 2020 *)
Extensions
Definition revised by N. J. A. Sloane, Jul 17 2009
More terms from R. J. Mathar, Jul 17 2009
Extended beyond a(31) by R. J. Mathar, Feb 05 2010
Comments