A162657 Least number m such that n is the denominator of sigma_{-1}(m), or zero if no such exists.
1, 2, 3, 4, 5, 18, 7, 8, 9, 20, 11, 48, 13, 112, 45, 16, 17, 468, 19, 480, 21, 88, 23, 72, 25, 52, 27, 196, 29, 180, 31, 32, 99, 68, 35, 36, 37, 152, 39, 80, 41, 1344, 43, 176, 810, 368, 47, 192, 49, 50, 459, 104, 53, 162, 55, 448, 57, 116, 59, 9360, 61, 1984, 63, 64, 65
Offset: 1
Keywords
Links
- Michel Marcus and Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 1000 terms from Michel Marcus)
Programs
-
Mathematica
a[n_] := Catch[ For[ lim = Quotient[2*10^9, n]*n; k = 0, k <= lim, k = k + n, If[Denominator[ DivisorSigma[-1, k]] == n, Throw[k]]; If[k >= lim, Throw[0]]]]; a[1]=1; Table[ an = a[n]; Print[{n, an}]; an , {n, 1, 1000}] (* Jean-François Alcover, Aug 14 2012 *)
-
PARI
al(n,lim=100000)=local(r,d);r=vector(n);for(k=1,lim,d=denominator(sigma(k,-1));if(d<=n&&r[d]==0,r[d]=k));r a(n,lim=1000000)=forstep(m=n,lim,n,if(denominator(sigma(m,-1))==n,return(m)));0
Comments