cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162663 Table by antidiagonals, T(n,k) is the number of partitions of {1..(nk)} that are invariant under a permutation consisting of n k-cycles.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 2, 7, 5, 1, 3, 8, 31, 15, 1, 2, 16, 42, 164, 52, 1, 4, 10, 111, 268, 999, 203, 1, 2, 28, 70, 931, 1994, 6841, 877, 1, 4, 12, 258, 602, 9066, 16852, 51790, 4140, 1, 3, 31, 106, 2892, 6078, 99925, 158778, 428131, 21147, 1, 4, 22, 329, 1144, 37778, 70402, 1224579, 1644732, 3827967, 115975
Offset: 0

Views

Author

Keywords

Comments

The upper left corner of the array is T(0,1).
Without loss of generality, the permutation can be taken to be (1 2 ... k) (k+1 k+2 ... 2k) ... ((n-1)k+1 (n-1)k+2 ... nk).
Note that it is the partition that is invariant, not the individual parts. Thus for n=k=2 with permutation (1 2)(3 4), the partition 1,3|2,4 is counted; it maps to 2,4|1,3, which is the same partition.

Examples

			The table starts:
   1,   1,   1,   1,   1
   1,   2,   2,   3,   2
   2,   7,   8,  16,  10
   5,  31,  42, 111,  70
  15, 164, 268, 931, 602
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n=0, 1, add(binomial(n-1, j-1)
           *add(d^(j-1), d=divisors(k))*A(n-j, k), j=1..n))
        end:
    seq(seq(A(n, 1+d-n), n=0..d), d=0..12);  # Alois P. Heinz, Oct 29 2015
  • Mathematica
    max = 11; ClearAll[col]; col[k_] := col[k] =  CoefficientList[ Series[ Exp[ Sum[ (Exp[d*x] - 1)/d, {d, Divisors[k]}]], {x, 0, max}], x]*Range[0, max]!; t[n_, k_] := col[k][[n]]; Flatten[ Table[ t[n-k+1, k], {n, 1, max}, {k, n, 1, -1}] ] (* Jean-François Alcover, Aug 08 2012, after e.g.f. *)
  • PARI
    amat(n,m)=local(r);r=matrix(n,m,i,j,1);for(k=1,n-1,for(j=1,m,r[k+1,j]=sum (i=1,k,binomial(k-1,i-1)*sumdiv(j,d,r[k-i+1,j]*d^(i-1)))));r
    acol(n,k)=local(fn);fn=exp(sumdiv(k,d,(exp(d*x+x*O(x^n))-1)/d));vector(n+ 1,i,polcoeff(fn,i-1)*(i-1)!)

Formula

E.g.f. for column k: exp(Sum_{d|k} (exp(d*x) - 1) / d).
Equivalently, column k is the exponential transform of a(n) = Sum_{d|k} d^(n-1); this represents a set of n k-cycles, each repeating the same d elements (parts), but starting in different places.
T(n,k) = Sum_{P a partition of n} SP(P) * Product_( (sigma_{i-1}(k))^(P(i)-1) ), where SP is A036040 or A080575, and P(i) is the number of parts in P of size i.
T(n,k) = Sum_{j=0..n-1} A036073(n,j)*k^(n-1-j). - Andrey Zabolotskiy, Oct 22 2017

Extensions

Offset set to 0 by Alois P. Heinz, Oct 29 2015