cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162728 G.f.: x/(1-x) = Sum_{n>=1} a(n)*log(1+x^n)/n.

Original entry on oeis.org

1, 3, 2, 8, 4, 6, 6, 20, 6, 12, 10, 16, 12, 18, 8, 48, 16, 18, 18, 32, 12, 30, 22, 40, 20, 36, 18, 48, 28, 24, 30, 112, 20, 48, 24, 48, 36, 54, 24, 80, 40, 36, 42, 80, 24, 66, 46, 96, 42, 60, 32, 96, 52, 54, 40, 120, 36, 84, 58, 64, 60, 90, 36, 256, 48, 60, 66, 128, 44, 72, 70
Offset: 1

Views

Author

Paul D. Hanna, Jul 12 2009

Keywords

Comments

Dirichlet inverse of A117212. - R. J. Mathar, Jul 15 2010

Examples

			x/(1-x) = log(1+x) + 3*log(1+x^2)/2 + 2*log(1+x^3)/3 + 8*log(1+x^4)/4 + 4*log(1+x^5)/5 + 6*log(1+x^6)/6 + 6*log(1+x^7)/7 + 20*log(1+x^8)/8 +...
		

Crossrefs

Programs

  • Maple
    nmax:=71: with(numtheory): for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := (p+2)*2^(p-1)*phi(2*n-1) od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Jan 26 2013
  • Mathematica
    f[p_, e_] := (p-1)*p^(e-1); f[2, e_] := (e+2)*2^(e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 27 2023 *)
  • PARI
    /* As the inverse Mobius transform of A091512: */
    {a(n)=sumdiv(n,d,moebius(n/d)*valuation((2*d)^d,2))}
    
  • PARI
    /* From a(2n-1)=phi(2n-1); a(2n)=phi(2n)*A090739(n), we get: */
    {a(n)=if(n%2==1,eulerphi(n),eulerphi(n)*valuation(3^n-1,2))}
    
  • PARI
    /* From x/(1-x) = Sum_{n>=1} a(n)*log(1+x^n)/n, we get: */
    {a(n)=local(A=[1]);for(k=1,n,A=concat(A,0);A[ #A]=#A*(1-polcoeff(sum(m=1,#A,A[m]/m*log(1+x^m +x*O(x^#A)) ),#A)));A[n]}

Formula

a(2n-1) = phi(2n-1); a(2n) = phi(2n)*A090739(n), where A090739(n) = exponent of 2 in 3^(2n)-1.
Inverse Mobius transform of A091512, where A091512(n) = exponent of 2 in (2n)^n.
Multiplicative: a(m*n) = a(m)*a(n) when gcd(m,n)=1, with a(p) = p-1 for odd prime p and a(2)=3.
G.f.: x/(1-x)^2 = Sum_{n>=1} a(n)*x^n/(1+x^n). - Paul D. Hanna, Jul 12 2009
Dirichlet g.f.: zeta(s-1)/( zeta(s)*(1-2^(1-s)) ). - R. J. Mathar, Apr 14 2011
a((2*n-1)*2^p) = (p+2)*2^(p-1)* phi(2*n-1), p >= 0. Observe that a(2^p) = A001792(p). - Johannes W. Meijer, Jan 26 2013
Sum_{k=1..n} a(k) ~ 6*n^2 / Pi^2. - Vaclav Kotesovec, Feb 07 2019
Multiplicative with a(2^e) = (e+2)*2^(e-1) and a(p^e) = (p-1)*p^(e-1) for an odd prime p. - Amiram Eldar, Aug 27 2023
From Ridouane Oudra, Jul 05 2025: (Start)
a(n) = Sum_{k=0..A007814(n)} 2^k*phi(n/2^k).
a(n) = Sum_{d|n} mu(n/d)*d*A001511(d).
a(n) = A000010(n)*A090740(n).
a(n) = A085058(n-1)*A055034(n), for n>1. (End)