A162840 Numbers k such that the cube of the sum of digits of k equals the product of digits of k.
0, 1, 666666, 1377789, 1377798, 1377879, 1377897, 1377978, 1377987, 1378779, 1378797, 1378977, 1379778, 1379787, 1379877, 1387779, 1387797, 1387977, 1389777, 1397778, 1397787, 1397877, 1398777, 1555888, 1558588, 1558858
Offset: 0
Examples
666666 is in the sequence because (1) cubed sum of its digits is (6+6+6+6+6+6)^3 = 46656, (2) the product of its digits is 6*6*6*6*6*6=46656; 46656=46656.
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
A007953 := proc(n) add(d,d=convert(n,base,10)) ; end: A007954 := proc(n) mul(d,d=convert(n,base,10)) ; end: A118880 := proc(n) (A007953(n))^3; end: for n from 1 to 2000000 do if A118880(n) = A007954(n) then printf("%d,\n",n) ; fi; od: # R. J. Mathar, Jul 19 2009
-
Mathematica
Select[Range[0,156*10^4],Total[IntegerDigits[#]]^3==Times@@IntegerDigits[#]&] (* Harvey P. Dale, Jul 07 2022 *)