A162940 a(n) = binomial(n+1,2)*6^2.
0, 36, 108, 216, 360, 540, 756, 1008, 1296, 1620, 1980, 2376, 2808, 3276, 3780, 4320, 4896, 5508, 6156, 6840, 7560, 8316, 9108, 9936, 10800, 11700, 12636, 13608, 14616, 15660, 16740, 17856, 19008, 20196, 21420, 22680, 23976, 25308, 26676, 28080, 29520, 30996
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Table[Binomial[n + 1, 2]*6^2, {n, 0, 58}]
-
PARI
a(n)=18*n*(n+1) \\ Charles R Greathouse IV, Jun 16 2017
Formula
From Amiram Eldar, Sep 01 2022: (Start)
Sum_{n>=1} 1/a(n) = 1/18.
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2)/9 - 1/18. (End)
From Amiram Eldar, Feb 22 2023: (Start)
Product_{n>=1} (1 - 1/a(n)) = -(18/Pi)*cos(sqrt(11)*Pi/6).
Product_{n>=1} (1 + 1/a(n)) = (18/Pi)*cos(sqrt(7)*Pi/6). (End)
From Elmo R. Oliveira, Nov 29 2024: (Start)
G.f.: 36*x/(1-x)^3.
E.g.f.: 18*x*(2 + x)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Comments