cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162940 a(n) = binomial(n+1,2)*6^2.

Original entry on oeis.org

0, 36, 108, 216, 360, 540, 756, 1008, 1296, 1620, 1980, 2376, 2808, 3276, 3780, 4320, 4896, 5508, 6156, 6840, 7560, 8316, 9108, 9936, 10800, 11700, 12636, 13608, 14616, 15660, 16740, 17856, 19008, 20196, 21420, 22680, 23976, 25308, 26676, 28080, 29520, 30996
Offset: 0

Views

Author

Zerinvary Lajos, Jul 18 2009, Jul 19 2009

Keywords

Comments

Number of n permutations (n>=2) of 7 objects s, t, u, v, z, x, y with repetition allowed, containing n-2 u's. Example: If n=2 then n-2 = zero (0) u, a(1)=36 because we have ss, st, sv, sz, sx, sy, ts, tt, tv, tz, tx, ty, vs, vt, vv, vz, vx, vy, zs, zt, zv, zz, zx, zy, xs, xt, xv, xz, xx, xy, ys, yt, yv, yz, yx, yy. If n=3 then n-2 = one (1) u, a(2) = 108, >> ssu, stu, etc. If n=4 then n-2 = two (2) u, a(2)= 216, >> ssuu, stuu, ..., txuu, etc. If n=5 then n-2 = three (3) u, a(3)=360, >> ssuuu, stuuu, ..., txuuu, etc.

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n + 1, 2]*6^2, {n, 0, 58}]
  • PARI
    a(n)=18*n*(n+1) \\ Charles R Greathouse IV, Jun 16 2017

Formula

From Amiram Eldar, Sep 01 2022: (Start)
Sum_{n>=1} 1/a(n) = 1/18.
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2)/9 - 1/18. (End)
From Amiram Eldar, Feb 22 2023: (Start)
a(n) = 18*n*(n+1) = 36*A000217(n) = 18*A002378(n).
Product_{n>=1} (1 - 1/a(n)) = -(18/Pi)*cos(sqrt(11)*Pi/6).
Product_{n>=1} (1 + 1/a(n)) = (18/Pi)*cos(sqrt(7)*Pi/6). (End)
From Elmo R. Oliveira, Nov 29 2024: (Start)
G.f.: 36*x/(1-x)^3.
E.g.f.: 18*x*(2 + x)*exp(x).
a(n) = 3*A049598(n) = 2*A163758(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)