cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162942 a(n) = binomial(n+1,2)*7^2.

Original entry on oeis.org

0, 49, 147, 294, 490, 735, 1029, 1372, 1764, 2205, 2695, 3234, 3822, 4459, 5145, 5880, 6664, 7497, 8379, 9310, 10290, 11319, 12397, 13524, 14700, 15925, 17199, 18522, 19894, 21315, 22785, 24304, 25872, 27489, 29155, 30870, 32634, 34447, 36309
Offset: 0

Views

Author

Zerinvary Lajos, Jul 18 2009

Keywords

Comments

Number of n permutations (n>=2) of 8 objects r, s, t, u, v, z, x, y with repetition allowed, containing n-2 u's.

Examples

			If n=2 then n-2=zero (0) u, a(1) = 49 because we have sr, tr, vr, zr, xr, yr, rs, rt, rv, rz, rx, ry, ss, st, sv, sz, sx, sy, ts, tt, tv, tz, tx, ty, vs, vt, vv, vz, vx, vy, zs, zt, zv, zz, zx, zy, xs, xt, xv, xz, xx, xy, ys, yt, yv, yz, yx, yy. If n=3 then n-2 = one (1) u, a(2) = 147 >> ssu, stu, etc.. Tf n=4 then n-2 = two (2) u, a(2) = 294 >> ssuu, stuu, ..., txuu, etc.. If n=5 then n-2 = three (3) u, a(3) = 490 >> rsuuu, stuuu, ..., rxuuu, etc..
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n + 1, 2]*7^2, {n, 0, 58}]
  • PARI
    a(n)=49*binomial(n+1,2) \\ Charles R Greathouse IV, May 02 2014

Formula

a(n) = A027469(n+2). - R. J. Mathar, Jul 18 2009
G.f.: -49*x/(x-1)^3. - R. J. Mathar, May 02 2014
From Amiram Eldar, Sep 04 2022: (Start)
Sum_{n>=1} 1/a(n) = 2/49.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(2*log(2)-1)/49. (End)
From Elmo R. Oliveira, Dec 27 2024: (Start)
E.g.f.: 49*exp(x)*x*(2 + x)/2.
a(n) = 49*A000217(n) = 49*n*(n+1)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)