cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162958 Equals A162956 convolved with (1, 3, 3, 3, ...).

Original entry on oeis.org

1, 4, 10, 19, 25, 40, 67, 94, 100, 115, 142, 175, 208, 280, 388, 469, 475, 490, 517, 550, 583, 655, 763, 850, 883, 955, 1069, 1201, 1372, 1696, 2101, 2344, 2350, 2365, 2392, 2425, 2458, 2530, 2638, 2725, 2758, 2830, 2944, 3076, 3247, 3571, 3976, 4225, 4258
Offset: 1

Views

Author

Gary W. Adamson, Jul 18 2009

Keywords

Comments

Can be considered a toothpick sequence for N=3, following rules analogous to those in A160552 (= special case of "A"), A151548 = special case "B", and the toothpick sequence A139250 (N=2) = special case "C".
To obtain the infinite set of toothpick sequences, (N = 2, 3, 4, ...), replace the multiplier "2" in A160552 with any N, getting a triangle with 2^n terms. Convolve this A sequence with (1, N, 0, 0, 0, ...) = B such that row terms of A triangles converge to B.
Then generalized toothpick sequences (C) = A convolved with (1, N, N, N, ...).
Examples: A160552 * (1, 2, 0, 0, 0,...) = a B-type sequence A151548.
A160552 * (1, 2, 2, 2, 2,...) = the toothpick sequence A139250 for N=2.
A162956 is analogous to A160552 but replaces "2" with the multiplier "3".
Row terms of A162956 tend to A162957 = (1, 3, 0, 0, 0, ...) * A162956.
Toothpick sequence for N = 3 = A162958 = A162956 * (1, 3, 3, 3, ...).
Row sums of "A"-type triangles = powers of (N+2); since row sums of A160552 = (1, 4, 16, 64, ...), while row sums of A162956 = (1, 5, 25, 125, ...).
Is there an illustration of this sequence using toothpicks? - Omar E. Pol, Dec 13 2016

Crossrefs

Third diagonal of A163311.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, n,
          (j-> 3*b(j)+b(j+1))(n-2^ilog2(n)))
        end:
    a:= proc(n) option remember;
          `if`(n=0, 0, a(n-1)+2*b(n-1)+b(n))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jan 28 2017
  • Mathematica
    b[n_] := b[n] = If[n<2, n, Function[j, 3*b[j]+b[j+1]][n-2^Floor[Log[2, n]] ]];
    a[n_] := a[n] = If[n == 0, 0, a[n-1] + 2*b[n-1] + b[n]];
    Array[a, 100] (* Jean-François Alcover, Jun 11 2018, after Alois P. Heinz *)

Extensions

Clarified definition by Omar E. Pol, Feb 06 2017