A162959 The pairs (x,y) such that (x^2 + y^2)/(x*y + 1) is a perfect square, i.e., 4.
0, 2, 2, 8, 8, 30, 30, 112, 112, 418, 418, 1560, 1560, 5822, 5822, 21728, 21728, 81090, 81090, 302632, 302632, 1129438, 1129438, 4215120, 4215120, 15731042, 15731042, 58709048, 58709048, 219105150, 219105150, 817711552, 817711552, 3051741058, 3051741058, 11389252680, 11389252680
Offset: 1
Examples
Pairs are (8,30) with (8^2 + 30^2)/(8*30 + 1) = 4, or (30,112) with (30^2 + 112^2)/(30*112 + 1) = 4.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,4,0,-1).
Programs
-
Mathematica
CoefficientList[Series[2 x (x + 1) / (x^4 - 4 x^2 + 1), {x, 0, 40}], x] (* Vincenzo Librandi, May 14 2013 *)
-
PARI
x='x+O('x^66); concat([0],Vec(2*x^2*(x+1)/(x^4-4*x^2+1))) \\ Joerg Arndt, May 15 2013
Formula
From Colin Barker, Feb 21 2013: (Start)
a(n) = 4*a(n-2) - a(n-4).
G.f.: 2*x^2*(x+1) / (x^4-4*x^2+1). (End)
Comments