cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162959 The pairs (x,y) such that (x^2 + y^2)/(x*y + 1) is a perfect square, i.e., 4.

Original entry on oeis.org

0, 2, 2, 8, 8, 30, 30, 112, 112, 418, 418, 1560, 1560, 5822, 5822, 21728, 21728, 81090, 81090, 302632, 302632, 1129438, 1129438, 4215120, 4215120, 15731042, 15731042, 58709048, 58709048, 219105150, 219105150, 817711552, 817711552, 3051741058, 3051741058, 11389252680, 11389252680
Offset: 1

Views

Author

Vincenzo Librandi, Jul 19 2009

Keywords

Comments

Essentially A052530, each term besides the first repeated. - R. J. Mathar, Jul 21 2009

Examples

			Pairs are (8,30) with (8^2 + 30^2)/(8*30 + 1) = 4, or (30,112) with (30^2 + 112^2)/(30*112 + 1) = 4.
		

Programs

  • Mathematica
    CoefficientList[Series[2 x (x + 1) / (x^4 - 4 x^2 + 1), {x, 0, 40}], x] (* Vincenzo Librandi, May 14 2013 *)
  • PARI
    x='x+O('x^66); concat([0],Vec(2*x^2*(x+1)/(x^4-4*x^2+1))) \\ Joerg Arndt, May 15 2013

Formula

From Colin Barker, Feb 21 2013: (Start)
a(n) = 4*a(n-2) - a(n-4).
G.f.: 2*x^2*(x+1) / (x^4-4*x^2+1). (End)