cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162971 Triangle read by rows: T(n,k) is number of non-derangement permutations of {1,2,...,n} having k cycles (1 <= k <= n).

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 8, 6, 1, 0, 30, 35, 10, 1, 0, 144, 210, 85, 15, 1, 0, 840, 1414, 735, 175, 21, 1, 0, 5760, 10752, 6664, 1960, 322, 28, 1, 0, 45360, 91692, 64764, 22449, 4536, 546, 36, 1, 0, 403200, 869040, 679580, 268380, 63273, 9450, 870, 45, 1, 0, 3991680, 9074736, 7704180, 3382280, 902055, 157773, 18150, 1320, 55, 1
Offset: 1

Views

Author

Emeric Deutsch, Jul 22 2009

Keywords

Comments

Sum of entries in row n = A002467(n) (the number of non-derangement permutations of {1,2,...,n}).
T(n,2) = n*(n-2)! = A001048(n-1) for n>=3.
Sum_{k=1..n} k*T(n,k) = A162972(n).

Examples

			T(4,2) = 8 because we have (1)(234), (1)(243), (134)(2), (143)(2), (124)(3), (142)(3), (123)(4), and (132)(4).
Triangle starts:
  1;
  0,   1;
  0,   3,   1;
  0,   8,   6,   1;
  0,  30,  35,  10,   1;
  0, 144, 210,  85,  15,   1;
  ...
		

Crossrefs

Programs

  • Maple
    G := (1-exp(-t*z))/(1-z)^t: Gser := simplify(series(G, z = 0, 15)): for n to 11 do P[n] := sort(expand(factorial(n)*coeff(Gser, z, n))) end do: for n to 11 do seq(coeff(P[n], t, j), j = 1 .. n) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, t) option remember; `if`(n=0, t, add(expand((j-1)!*
          b(n-j, `if`(j=1, 1, t))*x)*binomial(n-1, j-1), j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, 0)):
    seq(T(n), n=1..12);  # Alois P. Heinz, Aug 15 2023
  • Mathematica
    b[n_, t_] := b[n, t] = If[n == 0, t, Sum[Expand[(j - 1)!*b[n - j, If[j == 1, 1, t]]*x]*Binomial[n - 1, j - 1], {j, 1, n}]];
    T[n_] := CoefficientList[b[n, 0]/x, x];
    Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Apr 04 2024, after Alois P. Heinz *)

Formula

E.g.f.: G(t,z) = (1-exp(-tz))/(1-z)^t.