cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162974 Triangle read by rows: T(n,k) is the number of derangements of {1,2,...,n} having k cycles of length 2 (0 <= k <= floor(n/2)).

Original entry on oeis.org

1, 0, 0, 1, 2, 0, 6, 0, 3, 24, 20, 0, 160, 90, 0, 15, 1140, 504, 210, 0, 8988, 4480, 1260, 0, 105, 80864, 41040, 9072, 2520, 0, 809856, 404460, 100800, 18900, 0, 945, 8907480, 4447520, 1128600, 166320, 34650, 0, 106877320, 53450496, 13347180, 2217600
Offset: 0

Views

Author

Emeric Deutsch, Jul 22 2009

Keywords

Comments

Row n has 1 + floor(n/2) entries.
Sum of entries in row n = A000166(n) (the derangement numbers).
T(n,0) = A038205(n).
Sum_{k>=0} k*T(n,k) = A000387(n).

Examples

			T(4,2)=3 because we have (12)(34), (13)(24), and (14)(23).
Triangle starts:
    1;
    0;
    0,  1;
    2,  0;
    6,  0,  3;
   24, 20,  0;
  160, 90,  0, 15;
  ...
		

Crossrefs

T(2n,n) gives A001147.
T(2n+3,n) gives A000906(n) = 2*A000457(n).

Programs

  • Maple
    G := exp((1/2)*z*(t*z-z-2))/(1-z): Gser := simplify(series(G, z = 0, 16)): for n from 0 to 13 do P[n] := sort(expand(factorial(n)*coeff(Gser, z, n))) end do: for n from 0 to 13 do seq(coeff(P[n], t, j), j = 0 .. floor((1/2)*n)) end do;
    # second Maple program:
    b:= proc(n) option remember; expand(`if`(n=0, 1, add((j-1)!*
          `if`(j=2, x, 1)*b(n-j)*binomial(n-1, j-1), j=2..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)):
    seq(T(n), n=0..14);  # Alois P. Heinz, Jan 27 2022
  • Mathematica
    b[n_] := b[n] = Expand[If[n == 0, 1, Sum[(j - 1)!*If[j == 2, x, 1]*b[n - j]*Binomial[n - 1, j - 1], {j, 2, n}]]];
    T[n_] := With[{p = b[n]}, Table[Coefficient[p, x, i], {i, 0, n/2}]];
    Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Sep 17 2024, after Alois P. Heinz *)

Formula

E.g.f.: G(t,z) = exp(z(tz-z-2)/2)/(1-z).