cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162976 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k double descents and initial descents (n>=0; 0<=k<=max(0,n-1)) [we say that i is a doubledescent of a permutation p if p(i) > p(i+1) > p(i+2); we say that a permutation p has an initial descent if p(1) > p(2)].

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 9, 11, 3, 1, 39, 48, 28, 4, 1, 189, 297, 166, 62, 5, 1, 1107, 1902, 1419, 476, 129, 6, 1, 7281, 14391, 11637, 5507, 1235, 261, 7, 1, 54351, 118044, 111438, 56400, 19096, 3020, 522, 8, 1, 448821, 1078245, 1119312, 673128, 239146, 61986
Offset: 0

Views

Author

Emeric Deutsch, Jul 26 2009

Keywords

Comments

Sum of entries in row n is n! = A000142(n).
T(n,0) = A080635(n).

Examples

			T(4,2) = 3 because each of the permutations 4312, 4213, and 3214 has one doubledescent and one initial descent.
Triangle starts:
:   1;
:   1;
:   1,   1;
:   3,   2,   1;
:   9,  11,   3,  1;
:  39,  48,  28,  4, 1;
: 189, 297, 166, 62, 5, 1;
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983 (p. 195).

Crossrefs

Programs

  • Maple
    eq := s^2-(t+1)*s+1 = 0: sol := solve(eq, s): a := sol[1]: b := sol[2]: G := (exp(b*z)-exp(a*z))/(b*exp(a*z)-a*exp(b*z)): Gser := simplify(series(G, z = 0, 15)): P[0]:=1: for n to 11 do P[n] := sort(expand(factorial(n)*coeff(Gser, z, n))) end do: for n from 0 to 11 do seq(coeff(P[n], t, j), j = 0 .. max(0,n-1)) end do;
    # second Maple program:
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1, expand(
          add(b(u-j, o+j-1, 1), j=1..u)+
          add(b(u+j-1, o-j, 2)*`if`(t=2, x, 1), j=1..o)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(0, n, 1)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Dec 09 2016
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Expand[Sum[b[u-j, o+j-1, 1], {j, 1, u}] + Sum[b[u + j - 1, o - j, 2]*If[t == 2, x, 1], {j, 1, o}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}] ][b[0, n, 1]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *)

Formula

E.g.f.: G(t,z) = [exp(bz)-exp(az)]/[b*exp(az)-a*exp(bz)], where a+b=1+t and ab=1.

Extensions

One term for row n=0 prepended by Alois P. Heinz, Dec 09 2016