cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162984 Number of Dyck paths with no UUU's and no DDD's of semilength n and having k UUDUDD's (0<=k<=floor(n/3); U=(1,1), D=(1,-1)).

Original entry on oeis.org

1, 1, 2, 3, 1, 6, 2, 12, 5, 25, 11, 1, 53, 26, 3, 114, 62, 9, 249, 148, 25, 1, 550, 355, 69, 4, 1227, 853, 189, 14, 2760, 2057, 509, 46, 1, 6253, 4973, 1359, 145, 5, 14256, 12050, 3600, 446, 20, 32682, 29256, 9484, 1334, 75, 1, 75293, 71154, 24870, 3914, 265, 6
Offset: 0

Views

Author

Emeric Deutsch, Oct 11 2009

Keywords

Comments

T(n,k) is the number of weighted lattice paths in B(n) having k peaks. The members of B(n) are paths of weight n that start at (0,0), end on but never go below the horizontal axis, and whose steps are of the following four kinds: an (1,0)-step with weight 1, an (1,0)-step with weight 2, a (1,1)-step with weight 2, and a (1,-1)-step with weight 1. The weight of a path is the sum of the weights of its steps. A peak is a (1,1)-step followed by a (1,-1)-step. Example: T(7,2)=3. Indeed, denoting by h (H) the (1,0)-step of weight 1 (2), and U=(1,1), D=(1,-1), we have hUDUD, UDhUD, and UDUDh.
Number of entries in row n is 1+floor(n/3).

Examples

			T(4,1) = 2 because we have UDUUDUDD and UUDUDDUD.
Triangle starts:
1;
1;
2;
3,   1;
6,   2;
12,  5;
25, 11, 1;
53, 26, 3;
		

Crossrefs

Programs

  • Maple
    G := ((1-z-z^2+z^3-t*z^3-sqrt(1-2*z-z^2-2*t*z^3-z^4-2*z^5+z^6+2*t*z^4+2*t*z^5-2*t*z^6+t^2*z^6))*1/2)/z^3: Gser := simplify(series(G, z = 0, 20)): for n from 0 to 16 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 16 do seq(coeff(P[n], t, j), j = 0 .. floor((1/3)*n)) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x or t=9, 0,
         `if`(x=0, 1, expand(b(x-1, y+1, [2, 3, 9, 5, 3, 2, 2, 2][t])+
         `if`(t=6, z, 1) *b(x-1, y-1, [8, 8, 4, 7, 6, 7, 9, 7][t]))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
    seq(T(n), n=0..20);  # Alois P. Heinz, Jun 10 2014
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x || t == 9, 0, If[x == 0, 1, Expand[b[x-1, y+1, {2, 3, 9, 5, 3, 2, 2, 2}[[t]] ] + If[t == 6, z, 1]*b[x-1, y-1, {8, 8, 4, 7, 6, 7, 9, 7}[[t]] ]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, 1]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, May 27 2015, after Alois P. Heinz *)

Formula

G.f.: G=G(t,z) satisfies G = 1 + zG + z^2*G + z^3*(G-1+t)G.
Sum of entries in row n = A004148(n+1).
T(n,0) = A162985(n).
Sum(k*T(n,k), k=0..floor(n/3)) = A110320(n-2).