A163122 Composite numbers for which the sum of proper divisors equals the sum of the digit-reversed proper divisors.
4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 21, 22, 25, 27, 33, 35, 44, 49, 55, 66, 77, 88, 99, 121, 202, 242, 262, 302, 303, 362, 363, 382, 393, 403, 404, 453, 484, 505, 524, 543, 573, 605, 606, 626, 655, 689, 706, 707, 726, 746, 755, 766, 783, 786, 808, 840, 847, 905
Offset: 1
Examples
840 is in the sequence: the sum of its proper divisors is 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 10 + 12 + 14 + 15 + 20 + ... + 280 + 420 = A001065(840) = 2040, and the sum of the reversed proper divisors is 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 1 + 21 + 41 + 51 + 2 + ... + 82 + 24 = A069250(840) = 2040.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
read("transforms") ; A001065 := proc(n) numtheory[sigma](n)-n ; end: A069250 := proc(n) local pdvs ,a,d ; pdvs := numtheory[divisors](n) minus {n} ; a := 0 ; for d in pdvs do a := a+digrev(d) ; od: a ; end: for n from 4 to 1000 do if not isprime(n) and A001065(n) = A069250(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Jul 27 2009
-
Mathematica
Select[Range[1000],CompositeQ[#]&&DivisorSigma[1,#]-#==Total[IntegerReverse/@ Most[ Divisors[ #]]]&] (* Harvey P. Dale, Oct 12 2023 *)
Formula
Extensions
Keyword:base added by R. J. Mathar, Jul 27 2009