A163180 a(n) = tau(n) + Sum_{k=1..n} (n mod k).
1, 2, 3, 4, 6, 7, 10, 12, 15, 17, 24, 23, 30, 35, 40, 41, 53, 53, 66, 67, 74, 81, 100, 93, 106, 116, 129, 130, 153, 146, 169, 173, 188, 201, 222, 207, 235, 252, 273, 266, 299, 292, 327, 334, 345, 362, 405, 384, 417, 426, 453, 460, 507, 500, 533, 528, 557, 582, 637, 598, 647
Offset: 1
Keywords
Examples
a(1) = 1 + 0 = 1; a(2) = 2 + 0 = 2; a(3) = 2 + 1 = 3; a(4) = 3 + 1 = 4; a(5) = 2 + 4 = 6.
Programs
-
Maple
A004125 := proc(n) add( modp(n,k),k=2..n) ; end: A163180 := proc(n) numtheory[tau](n)+A004125(n) ; end: seq(A163180(n),n=1..80) ; # R. J. Mathar, Jul 27 2009
-
Mathematica
Table[DivisorSigma[0,n]+Sum[Mod[n,k],{k,n}],{n,70}] (* Harvey P. Dale, Feb 11 2015 *)
-
Python
from math import isqrt from sympy import divisor_count def A163180(n): return divisor_count(n)+n**2+((s:=isqrt(n))**2*(s+1)-sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1) # Chai Wah Wu, Oct 22 2023
Extensions
169 inserted by R. J. Mathar, Jul 27 2009
Comments