cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163180 a(n) = tau(n) + Sum_{k=1..n} (n mod k).

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 10, 12, 15, 17, 24, 23, 30, 35, 40, 41, 53, 53, 66, 67, 74, 81, 100, 93, 106, 116, 129, 130, 153, 146, 169, 173, 188, 201, 222, 207, 235, 252, 273, 266, 299, 292, 327, 334, 345, 362, 405, 384, 417, 426, 453, 460, 507, 500, 533, 528, 557, 582, 637, 598, 647
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 22 2009

Keywords

Comments

Number of divisors of n plus the sum of all the remainders modulo the numbers below n.

Examples

			a(1) = 1 + 0 = 1;
a(2) = 2 + 0 = 2;
a(3) = 2 + 1 = 3;
a(4) = 3 + 1 = 4;
a(5) = 2 + 4 = 6.
		

Crossrefs

Programs

  • Maple
    A004125 := proc(n) add( modp(n,k),k=2..n) ; end: A163180 := proc(n) numtheory[tau](n)+A004125(n) ; end: seq(A163180(n),n=1..80) ; # R. J. Mathar, Jul 27 2009
  • Mathematica
    Table[DivisorSigma[0,n]+Sum[Mod[n,k],{k,n}],{n,70}] (* Harvey P. Dale, Feb 11 2015 *)
  • Python
    from math import isqrt
    from sympy import divisor_count
    def A163180(n): return divisor_count(n)+n**2+((s:=isqrt(n))**2*(s+1)-sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1) # Chai Wah Wu, Oct 22 2023

Formula

a(n) = A000005(n) + A004125(n).

Extensions

169 inserted by R. J. Mathar, Jul 27 2009