A163185 Primes p such that the equation x^2 = -2 mod p has a solution, and ord_p(-2) is even.
17, 41, 73, 89, 97, 113, 137, 193, 233, 241, 257, 313, 337, 353, 401, 409, 433, 449, 457, 521, 569, 577, 593, 601, 641, 673, 761, 769, 809, 857, 881, 929, 937, 953, 977, 1009, 1129, 1153, 1201, 1217, 1249, 1289, 1297, 1321, 1361, 1409, 1433, 1489, 1601, 1609
Offset: 1
Examples
17 belongs to this sequence as 7^2 == -2 (mod 17) and ord_p(-2) = 8, even but <> 0 (mod 16).
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
with(numtheory):k:=1: A:=NULL:p:=2: for c to 30000 do p:=nextprime(p);o:=order(-2,p);R:=gcd(2^100,p-1);if o mod 2=0 and p mod 2^(k+1) = 1 and o mod R/2^(k-1)<>0 then A:=A,p;;fi;od:A;
-
PARI
lista(nn) = forprime(p=3, nn, if(znorder(Mod(-2, p))%2==0 && []~!=polrootsmod(x^2+2, p), print1(p, ", "))); \\ Jinyuan Wang, Mar 24 2020
Extensions
More terms from Jinyuan Wang, Mar 24 2020
Comments