A163194 a(n) = F(n)^2 * L(n+1)^2 * F(n-1) * L(n+2), where F(n) and L(n) are the Fibonacci and Lucas numbers, respectively.
0, 0, 112, 2156, 39204, 704700, 12648640, 226979168, 4072998384, 73087049196, 1311494037700, 23533806023420, 422297015415552, 7577812474157376, 135978327526488304, 2440032083021144300, 43784599166902574820, 785682752921352087228, 14098504953417767184064, 252987406408599326907296
Offset: 0
Examples
G.f. = 112*x^2 + 2156*x^3 + 39204*x^4 + 704700*x^5 + 12648640*x^6 + ...
References
- Stuart Clary and Paul D. Hemenway, On sums of cubes of Fibonacci numbers, Applications of Fibonacci Numbers, Vol. 5 (St. Andrews, 1992), 123-136, Kluwer Acad. Publ., 1993. See equation (3).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (20,-35,-35,20,-1).
Programs
-
Magma
[(Fibonacci(n)*Lucas(n+1))^2*(Fibonacci(n-1)*Lucas(n+2)): n in [0..30]]; // G. C. Greubel, Dec 21 2017
-
Mathematica
a[n_Integer] := Fibonacci[n]^2 LucasL[n+1]^2 Fibonacci[n-1] LucasL[n+2] LinearRecurrence[{20, -35, -35, 20, -1}, {0, 0, 112, 2156, 39204}, 50] (* or *) Table[(1/5)*(Fibonacci[6n+3] - 12*Fibonacci[2n+1] + 10*(-1)^n), {n,0,25}] (* G. C. Greubel, Dec 09 2016 *) -
PARI
for(n=0,30, print1((1/5)*(fibonacci(6*n+3) - 12*fibonacci(2*n+1) + 10*(-1)^n), ", ")) \\ G. C. Greubel, Dec 21 2017
Formula
a(n) = F(n)^2 * L(n+1)^2 * F(n-1) * L(n+2).
Unfactored form: a(n) = (1/5)*(F(6n+3) - 12*F(2n+1) + 10*(-1)^n).
Unfactored form: a(n) = F(2n+1)^3 - 3*F(2n+1) + 2*(-1)^n.
Summation form: a(n) = 4*Sum_{k=1..n} F(2k)^3 = 4 A163198(n) if n is even; a(n) = 4*Sum_{k=2..n} F(2k)^3 = 4 A163199(n) if n is odd. a(n) - 21 a(n-1) + 56 a(n-2) - 21 a(n-3) + a(n-4) = 200*(-1)^n.
a(n) - 20 a(n-1) + 35 a(n-2) + 35 a(n-3) - 20 a(n-4) + a(n-5) = 0.
G.f.: (112*x^2 - 84*x^3 + 4*x^4)/(1 - 20*x + 35*x^2 + 35*x^3 - 20*x^4 + x^5) = 4*x^2*(28 - 21*x + x^2)/((1 + x)*(1 - 3*x + x^2)*(1 - 18*x + x^2)).
a(n) - A163196(n) = 4*(-1)^n.
Comments