A163195 a(n) = (1/4)*F(n)^2 * L(n+1)^2 * F(n-1) * L(n+2), where F(n) and L(n) are the Fibonacci and Lucas numbers, respectively.
0, 0, 28, 539, 9801, 176175, 3162160, 56744792, 1018249596, 18271762299, 327873509425, 5883451505855, 105574253853888, 1894453118539344, 33994581881622076, 610008020755286075, 10946149791725643705, 196420688230338021807, 3524626238354441796016, 63246851602149831726824
Offset: 0
References
- Stuart Clary and Paul D. Hemenway, On sums of cubes of Fibonacci numbers, Applications of Fibonacci Numbers, Vol. 5 (St. Andrews, 1992), 123-136, Kluwer Acad. Publ., 1993. See equation (3).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (20,-35,-35,20,-1).
Programs
-
Magma
[(1/4)*(Fibonacci(n)*Lucas(n+1))^2*(Fibonacci(n-1)*Lucas(n+2)): n in [0..30]]; // G. C. Greubel, Dec 21 2017
-
Mathematica
a[n_Integer] := (1/4)*Fibonacci[n]^2 * LucasL[n+1]^2 * Fibonacci[n-1] * LucasL[n+2] LinearRecurrence[{20,-35,-35,20,-1}, {0,0,28,539,9801}, 50] (* or *) Table[(Fibonacci[6n+3] - 12*Fibonacci[2n+1] + 10*(-1)^n)/20, {n,1,25}] (* G. C. Greubel, Dec 09 2016 *)
-
PARI
for(n=0,30, print1((fibonacci(6*n+3) - 12*fibonacci(2*n+1) + 10*(-1)^n)/20, ", ")) \\ G. C. Greubel, Dec 21 2017
Formula
a(n) = (1/4)*F(n)^2 * L(n+1)^2 * F(n-1) * L(n+2).
a(n) = (1/20)*(F(6n+3) - 12*F(2n+1) + 10*(-1)^n).
a(n) = (1/4)(F(2n+1)^3 - 3*F(2n+1) + 2*(-1)^n).
a(n) = Sum_{k=1..n} F(2k)^3 = A163198(n) if n is even.
a(n) = Sum_{k=2..n} F(2k)^3 = A163199(n) if n is odd.
a(n) - 21 a(n-1) + 56 a(n-2) - 21 a(n-3) + a(n-4) = 50*(-1)^n.
a(n) - 20 a(n-1) + 35 a(n-2) + 35 a(n-3) - 20 a(n-4) + a(n-5) = 0.
G.f.: (28*x^2 - 21*x^3 + x^4)/(1 - 20*x + 35*x^2 + 35*x^3 - 20*x^4 + x^5) = x^2*(28 - 21*x + x^2)/((1 + x)*(1 - 3*x + x^2)*(1 - 18*x + x^2)).
a(n) - A163197(n) = (-1)^n.
Comments