cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163195 a(n) = (1/4)*F(n)^2 * L(n+1)^2 * F(n-1) * L(n+2), where F(n) and L(n) are the Fibonacci and Lucas numbers, respectively.

Original entry on oeis.org

0, 0, 28, 539, 9801, 176175, 3162160, 56744792, 1018249596, 18271762299, 327873509425, 5883451505855, 105574253853888, 1894453118539344, 33994581881622076, 610008020755286075, 10946149791725643705, 196420688230338021807, 3524626238354441796016, 63246851602149831726824
Offset: 0

Views

Author

Stuart Clary, Jul 24 2009

Keywords

Comments

Natural bilateral extension (brackets mark index 0): ..., 9800, 540, 27, 1, -1, [0], 0, 28, 539, 9801, 176175, ... This is A163197-reversed followed by A163195. That is, A163195(-n) = A163197(n-1).

References

  • Stuart Clary and Paul D. Hemenway, On sums of cubes of Fibonacci numbers, Applications of Fibonacci Numbers, Vol. 5 (St. Andrews, 1992), 123-136, Kluwer Acad. Publ., 1993. See equation (3).

Crossrefs

Programs

  • Magma
    [(1/4)*(Fibonacci(n)*Lucas(n+1))^2*(Fibonacci(n-1)*Lucas(n+2)): n in [0..30]]; // G. C. Greubel, Dec 21 2017
  • Mathematica
    a[n_Integer] := (1/4)*Fibonacci[n]^2 * LucasL[n+1]^2 * Fibonacci[n-1] * LucasL[n+2]
    LinearRecurrence[{20,-35,-35,20,-1}, {0,0,28,539,9801}, 50] (* or *) Table[(Fibonacci[6n+3] - 12*Fibonacci[2n+1] + 10*(-1)^n)/20, {n,1,25}] (* G. C. Greubel, Dec 09 2016 *)
  • PARI
    for(n=0,30, print1((fibonacci(6*n+3) - 12*fibonacci(2*n+1) + 10*(-1)^n)/20, ", ")) \\ G. C. Greubel, Dec 21 2017
    

Formula

Let F(n) be the Fibonacci number A000045(n) and let L(n) be the Lucas number A000032(n).
a(n) = (1/4)*F(n)^2 * L(n+1)^2 * F(n-1) * L(n+2).
a(n) = (1/20)*(F(6n+3) - 12*F(2n+1) + 10*(-1)^n).
a(n) = (1/4)(F(2n+1)^3 - 3*F(2n+1) + 2*(-1)^n).
a(n) = Sum_{k=1..n} F(2k)^3 = A163198(n) if n is even.
a(n) = Sum_{k=2..n} F(2k)^3 = A163199(n) if n is odd.
a(n) - 21 a(n-1) + 56 a(n-2) - 21 a(n-3) + a(n-4) = 50*(-1)^n.
a(n) - 20 a(n-1) + 35 a(n-2) + 35 a(n-3) - 20 a(n-4) + a(n-5) = 0.
G.f.: (28*x^2 - 21*x^3 + x^4)/(1 - 20*x + 35*x^2 + 35*x^3 - 20*x^4 + x^5) = x^2*(28 - 21*x + x^2)/((1 + x)*(1 - 3*x + x^2)*(1 - 18*x + x^2)).
a(n) - A163197(n) = (-1)^n.