cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163211 Swinging Wilson quotients (A163210) which are primes.

Original entry on oeis.org

3, 23, 71, 757, 30671, 1383331, 245273927, 3362110459, 107752663194272623, 5117886516250502670227, 34633371587745726679416744736000996167729085703, 114326045625240879227044995173712991937709388241980425799
Offset: 1

Views

Author

Peter Luschny, Jul 24 2009

Keywords

Comments

a(14)-a(18) certified prime by Primo 4.2.0. a(17) = A163210(569) = P1239, a(18) = A163210(787) = P1812. - Charles R Greathouse IV, Dec 11 2016

Examples

			The quotient (252+1)/11 = 23 is a swinging Wilson quotient and a prime, so 23 is a member.
		

Crossrefs

Programs

  • Maple
    A163211 := n -> select(isprime,A163210(n));
  • Mathematica
    sf[n_] := n!/Quotient[n, 2]!^2; a[n_] := (p = Prime[n]; (sf[p - 1] + (-1)^Floor[(p + 2)/2])/p); Select[PrimeQ][Table[a[n], {n, 1, 100}]] (* G. C. Greubel, Dec 10 2016 *)
  • PARI
    sf(n)=n!/(n\2)!^2
    forprime(p=2,1e3, t=sf(p-1)\/p; if(isprime(t), print1(t", "))) \\ Charles R Greathouse IV, Dec 11 2016