A163213 Swinging Wilson remainders ((p-1)$ + (-1)^floor((p+2)/2))/p mod p, p prime. Here '$' denotes the swinging factorial function (A056040).
1, 1, 1, 3, 1, 6, 9, 13, 12, 2, 19, 2, 5, 36, 6, 19, 43, 11, 47, 67, 39, 41, 70, 12, 17, 83, 88, 81, 25, 53, 91, 97, 106, 79, 43, 39, 7, 29, 73, 6, 79, 115
Offset: 1
Keywords
Examples
The swinging Wilson quotient related to the 5th prime is (252+1)/11=23, so the 5th term is 23 mod 11 = 1.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
- Peter Luschny, Swinging Primes.
Programs
-
Maple
WR := proc(f,r,n) map(p->(f(p-1)+r(p))/p mod p,select(isprime,[$1..n])) end: A002068 := n -> WR(factorial,p->1,n); A163213 := n -> WR(swing,p->(-1)^iquo(p+2,2),n);
-
Mathematica
sf[n_] := n!/Quotient[n, 2]!^2; a[n_] := (p = Prime[n]; Mod[(sf[p - 1] + (-1)^Floor[(p + 2)/2])/p, p]); Table[a[n], {n, 1, 42}] (* Jean-François Alcover, Jun 28 2013 *)
-
PARI
sf(n)=n!/(n\2)!^2 apply(p->sf(p-1)\/p%p, primes(100)) \\ Charles R Greathouse IV, Dec 11 2016
Comments