A163235 Two-dimensional Binary Reflected Gray Code, transposed version: a(i,j) = bits of binary expansion of A003188(j) interleaved with that of A003188(i).
0, 2, 1, 10, 3, 5, 8, 11, 7, 4, 40, 9, 15, 6, 20, 42, 41, 13, 14, 22, 21, 34, 43, 45, 12, 30, 23, 17, 32, 35, 47, 44, 28, 31, 19, 16, 160, 33, 39, 46, 60, 29, 27, 18, 80, 162, 161, 37, 38, 62, 61, 25, 26, 82, 81, 170, 163, 165, 36, 54, 63, 57, 24, 90, 83, 85, 168, 171, 167
Offset: 0
References
- Clifford A. Pickover, The Zen of Magic Squares, Circles, and Stars: An Exhibition of Surprising Structures across Dimensions, Princeton University Press, 2002, pp. 285-289.
Links
Crossrefs
Programs
-
Mathematica
Table[Function[k, FromDigits[#, 2] &@Apply[Function[{a, b}, Riffle @@ Map[PadLeft[#, Max[Length /@ {a, b}]] &, {a, b}]], Map[IntegerDigits[#, 2] &@ BitXor[#, Floor[#/2]] &, {k, j}]]][i - j], {i, 0, 11}, {j, 0, i}] // Flatten (* Michael De Vlieger, Jun 25 2017 *)
-
Python
def a000695(n): n=bin(n)[2:] x=len(n) return sum(int(n[i])*4**(x - 1 - i) for i in range(x)) def a003188(n): return n^(n>>1) def a(n, k): return a000695(a003188(n)) + 2*a000695(a003188(k)) for n in range(21): print([a(k, n - k) for k in range(n + 1)]) # Indranil Ghosh, Jun 25 2017
-
Scheme
(define (A163235 n) (A163233bi (A002262 n) (A025581 n)))
Comments