cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163269 T(n,k) = largest coefficient in the expansion of (1 + ... + x^(n-1))^(2*k).

Original entry on oeis.org

1, 1, 2, 1, 6, 3, 1, 20, 19, 4, 1, 70, 141, 44, 5, 1, 252, 1107, 580, 85, 6, 1, 924, 8953, 8092, 1751, 146, 7, 1, 3432, 73789, 116304, 38165, 4332, 231, 8, 1, 12870, 616227, 1703636, 856945, 135954, 9331, 344, 9, 1, 48620, 5196627, 25288120, 19611175, 4395456
Offset: 1

Views

Author

R. H. Hardin, Jul 24 2009

Keywords

Comments

T(n,k) = number of ways the sums of all components of two 1..n k-vectors can be equal.
T(n,k) is an odd polynomial in n of order 2*k-1.
Examples:
T(n,1) = n.
T(n,2) = (2/3)*n^3 + (1/3)*n.
T(n,3) = (11/20)*n^5 + (1/4)*n^3 + (1/5)*n.
T(n,4) = (151/315)*n^7 + (2/9)*n^5 + (7/45)*n^3 + (1/7)*n.
Table starts:
1 1 1 1 1 ...
2 6 20 70 252 ...
3 19 141 1107 8953 ...
4 44 580 8092 116304 ...
5 85 1751 38165 856945 ...
...

Examples

			For n = 3 and k = 2, (1 + x + x^2)^(2*2) = x^8 + 4*x^7 + 10*x^6 + 16*x^5 + 19*x^4 + 16*x^3 + 10*x^2 + 4*x + 1, whose largest coefficient is T(3,2) = 19.
		

Crossrefs

Removing the leftmost column of A349933 generates this sequence.
Cf. A273975.

Programs

  • PARI
    T(n,k) = polcoef(sum(i=0, n-1, x^i)^(2*k), k*(n-1)); \\ Michel Marcus, Jan 23 2024

Formula

T(n,k) = A273975(2*k, n, (n-1)*k). - Andrey Zabolotskiy, Jan 23 2024