A163275 a(n) = n^5*(n+1)^2/2.
0, 2, 144, 1944, 12800, 56250, 190512, 537824, 1327104, 2952450, 6050000, 11595672, 21026304, 36386714, 60505200, 97200000, 151519232, 230016834, 341067024, 495219800, 705600000, 988352442, 1363135664, 1853666784
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Programs
-
Maple
A163275 := proc(n) n^5*(n+1)^2/2 ; end proc: seq(A163275(n),n=0..60) ; # R. J. Mathar, Feb 05 2010
-
Mathematica
Table[(1/2)*n^5*(n + 1)^2, {n,0,50}] (* or *) LinearRecurrence[{8,-28,56, -70,56,-28,8,-1}, {0,2,144,1944,12800,56250,190512,537824}, 50] (* G. C. Greubel, Dec 12 2016 *)
-
PARI
concat([0], Vec(2*x*(1+64*x+424*x^2+584*x^3+179*x^4+8*x^5)/(x-1)^8 + O(x^50))) \\ G. C. Greubel, Dec 12 2016
Formula
From R. J. Mathar, Feb 05 2010: (Start)
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).
G.f.: 2*x*(1 + 64*x + 424*x^2 + 584*x^3 + 179*x^4 +8*x^5)/(x-1)^8. (End)
From Amiram Eldar, May 14 2022: (Start)
Sum_{n>=1} 1/a(n) = 12 -5*Pi^2/3 - 2*Pi^4/45 + 6*zeta(3) + 2*zeta(5).
Sum_{n>=1} (-1)^(n+1)/a(n) = 20*log(2) + 9*zeta(3)/2 + 15*zeta(5)/8 - 12 - Pi^2/2 - 7*Pi^4/180. (End)
Extensions
Extended by R. J. Mathar, Feb 05 2010
Comments