A163284 Triangle read by rows in which row n lists n+1 terms, starting with n^4 and ending with n^5, such that the difference between successive terms is equal to n^4 - n^3.
0, 1, 1, 16, 24, 32, 81, 135, 189, 243, 256, 448, 640, 832, 1024, 625, 1125, 1625, 2125, 2625, 3125, 1296, 2376, 3456, 4536, 5616, 6696, 7776, 2401, 4459, 6517, 8575, 10633, 12691, 14749, 16807, 4096, 7680, 11264, 14848, 18432, 22016, 25600, 29184, 32768
Offset: 0
Examples
Triangle begins: 0; 1,1; 16,24,32; 81,135,189,243; 256,448,640,832,1024; 625,1125,1625,2125,2625,3125; 1296,2376,3456,4536,5616,6696,7776; 2401,4459,6517,8575,10633,12691,14749,16807; 4096,7680,11264,14848,18432,22016,25600,29184,32768; 6561,12393,18225,24057,29889,35721,41553,47385,53217,59049; 10000,19000,28000,37000,46000,55000,64000,73000,82000,91000,100000;
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Crossrefs
Programs
-
Mathematica
Table[n^4 + k*(n^4 - n^3), {n,0,15}, {k,0,n}] // Flatten (* G. C. Greubel, Dec 17 2016 *)
-
PARI
A163284(n, k)=n^4 +k*(n^4 -n^3) \\ G. C. Greubel, Dec 17 2016
Comments