A163326 Pick digits at the odd distance from the least significant end of the ternary expansion of n, then convert back to decimal.
0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 3, 3, 3, 4, 4, 4, 5, 5, 5, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 6, 6, 6, 7, 7, 7, 8, 8, 8, 6, 6, 6, 7, 7, 7, 8, 8, 8, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0
Offset: 0
Examples
42 in ternary base (A007089) is written as '1120' (1*27 + 1*9 + 2*3 + 0), from which we pick the first and 3rd digits from the right (zero-based!), giving '12' = 1*3 + 2 = 5, thus a(42) = 5.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..728
- Kevin Ryde, Plot2 of X=A163325,Y=A163326, illustrating the ternary Z-order curve.
- Index entries for sequences related to coordinates of 2D curves
Crossrefs
Programs
-
PARI
a(n) = fromdigits(digits(n,9)\3,3); \\ Kevin Ryde, May 15 2020
Formula
a(n) = A163325(floor(n/3))
a(n) = Sum_{k>=0} A030341(n,k)*b(k) with (b) = (0,1,0,3,0,9,0,27,0,81,0,243,0,...): powers of 3 alternating with zeros. - Philippe Deléham, Oct 22 2011
Extensions
Edited by Charles R Greathouse IV, Nov 01 2009