A163336 Peano curve in an n X n grid, starting downwards from the top left corner, listed antidiagonally as A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), ...
0, 5, 1, 6, 4, 2, 47, 7, 3, 15, 48, 46, 8, 14, 16, 53, 49, 45, 9, 13, 17, 54, 52, 50, 44, 10, 12, 18, 59, 55, 51, 39, 43, 11, 23, 19, 60, 58, 56, 38, 40, 42, 24, 22, 20, 425, 61, 57, 69, 37, 41, 29, 25, 21, 141, 426, 424, 62, 68, 70, 36, 30, 28, 26, 140, 142, 431, 427
Offset: 0
Examples
The top left 9 X 9 corner of the array shows how this surjective self-avoiding walk begins (connect the terms in numerical order, 0-1-2-3-...): 0 5 6 47 48 53 54 59 60 1 4 7 46 49 52 55 58 61 2 3 8 45 50 51 56 57 62 15 14 9 44 39 38 69 68 63 16 13 10 43 40 37 70 67 64 17 12 11 42 41 36 71 66 65 18 23 24 29 30 35 72 77 78 19 22 25 28 31 34 73 76 79 20 21 26 27 32 33 74 75 80
Links
- A. Karttunen, Table of n, a(n) for n = 0..3320
- E. H. Moore, On Certain Crinkly Curves, Transactions of the American Mathematical Society, volume 1, number 1, 1900, pages 72-90. (And errata.) See section 7 (figure 3 with Y downwards is the table here).
- Giuseppe Peano, Sur une courbe, qui remplit toute une aire plane, Mathematische Annalen, volume 36, number 1, 1890, pages 157-160. Also EUDML (link to GDZ).
- Rémy Sigrist, Colored scatterplot of (x, y) such that 0 <= x, y < 3^6 (where the hue is function of T(x, y))
- Eric Weisstein's World of Mathematics, Hilbert curve (this curve called "Hilbert II").
- Wikipedia, Self-avoiding walk
- Wikipedia, Space-filling curve
- Index entries for sequences that are permutations of the natural numbers
Crossrefs
Programs
-
Mathematica
b[{n_, k_}, {m_}] := (A[n, k] = m - 1); MapIndexed[b, List @@ PeanoCurve[4][[1]]]; Table[A[n - k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 07 2021 *)
Extensions
Name corrected by Kevin Ryde, Aug 28 2020