A163359 Hilbert curve in N x N grid, starting downwards from the top-left corner, listed by descending antidiagonals.
0, 3, 1, 4, 2, 14, 5, 7, 13, 15, 58, 6, 8, 12, 16, 59, 57, 9, 11, 17, 19, 60, 56, 54, 10, 30, 18, 20, 63, 61, 55, 53, 31, 29, 23, 21, 64, 62, 50, 52, 32, 28, 24, 22, 234, 65, 67, 49, 51, 33, 35, 27, 25, 233, 235, 78, 66, 68, 48, 46, 34, 36, 26, 230, 232, 236, 79, 77, 71
Offset: 0
Examples
The top left 8x8 corner of the array shows how this surjective self-avoiding walk begins (connect the terms in numerical order, 0-1-2-3-...): +0 +3 +4 +5 58 59 60 63 +1 +2 +7 +6 57 56 61 62 14 13 +8 +9 54 55 50 49 15 12 11 10 53 52 51 48 16 17 30 31 32 33 46 47 19 18 29 28 35 34 45 44 20 23 24 27 36 39 40 43 21 22 25 26 37 38 41 42
Links
- A. Karttunen, Table of n, a(n) for n = 0..32895
- David Hilbert, Ueber die stetige Abbildung einer Linie auf ein Flächenstück, Mathematische Annalen, volume 38, number 3, 1891, pages 459-460. Also EUDML (link to GDZ).
- Eric Weisstein's World of Mathematics, Hilbert curve
- Wikipedia, Self-avoiding walk
- Wikipedia, Space-filling curve
- Index entries for sequences that are permutations of the nonnegative integers
Crossrefs
Programs
-
Mathematica
b[{n_, k_}, {m_}] := (A[n, k] = m-1); MapIndexed[b, List @@ HilbertCurve[4][[1]]]; Table[A[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 07 2021 *)