cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163434 Number of different fixed (possibly) disconnected tetrominoes bounded tightly by an n X n square.

Original entry on oeis.org

0, 1, 70, 425, 1426, 3577, 7526, 14065, 24130, 38801, 59302, 87001, 123410, 170185, 229126, 302177, 391426, 499105, 627590, 779401, 957202, 1163801, 1402150, 1675345, 1986626, 2339377, 2737126, 3183545, 3682450, 4237801, 4853702
Offset: 1

Views

Author

David Bevan, Jul 28 2009

Keywords

Examples

			a(2)=1: the (connected) square tetromino.
		

Crossrefs

Programs

  • Mathematica
    Join[{0}, Table[(2 n^2 - 4 n + 1)*(3 n^2 - 6 n + 1), {n, 2, 50}]] (* or *) Join[{0}, LinearRecurrence[{5,-10,10,-5,1}, {1, 70, 425, 1426, 3577}, 50]] (* G. C. Greubel, Dec 23 2016 *)
  • PARI
    concat([0], Vec(x^2*(1+65*x+85*x^2-9*x^3+2*x^4)/(1-x)^5 + O(x^50))) \\ G. C. Greubel, Dec 23 2016

Formula

a(n) = (2n^2 -4n +1)*(3n^2 -6n +1), n>1.
G.f.: x^2*(1+65*x+85*x^2-9*x^3+2*x^4)/(1-x)^5. - Colin Barker, Apr 25 2012
E.g.f.: (6*x^4 + 12*x^3 - x^2 + x + 1)*exp(x) - 2 x - 1. - G. C. Greubel, Dec 23 2016