cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163435 Number of different fixed (possibly) disconnected pentominoes bounded tightly by an n X n square.

Original entry on oeis.org

0, 0, 102, 1792, 11550, 46848, 144550, 371712, 838782, 1715200, 3247398, 5779200, 9774622, 15843072, 24766950, 37531648, 55357950, 79736832, 112466662, 155692800, 211949598, 284204800, 375906342, 491031552, 634138750, 810421248
Offset: 1

Views

Author

David Bevan, Jul 28 2009

Keywords

Examples

			a(3) = 102: there are 102 rotations of the 19 free (possibly) disconnected pentominoes bounded tightly by a 3 X 3 square; these include the F, T, V, W, X and Z (connected) pentominoes and 13 strictly disconnected free pentominoes.
		

Crossrefs

Programs

  • Mathematica
    Join[{0}, Table[(2/3)*n^2*(n - 2)^2*(5*n^2 - 10*n + 2), {n, 2, 50}]] (* or *) Join[{0}, LinearRecurrence[{7,-21,35,-35,21,-7,1}, {0, 102, 1792, 11550, 46848, 144550, 371712}, 50]] (* G. C. Greubel, Dec 23 2016 *)
  • PARI
    concat([0,0], Vec(2*x^3*(51+539*x+574*x^2+30*x^3+7*x^4-x^5)/ (1-x)^7 + O(x^50))) \\ G. C. Greubel, Dec 23 2016

Formula

a(n) = 2/3*n^2*(n-2)^2*(5*n^2-10*n+2), n>1.
G.f.: 2*x^3*(51+539*x+574*x^2+30*x^3+7*x^4-x^5)/(1-x)^7. - Colin Barker, Apr 25 2012
E.g.f.: (2/3)*x*(5*x^5 + 45*x^4 + 87*x^3 + 24*x^2 + 3*x - 3)*exp(x) + 2*x. - G. C. Greubel, Dec 23 2016