cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A163334 Peano curve in an n X n grid, starting rightwards from the top left corner, listed antidiagonally as A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), ... .

Original entry on oeis.org

0, 1, 5, 2, 4, 6, 15, 3, 7, 47, 16, 14, 8, 46, 48, 17, 13, 9, 45, 49, 53, 18, 12, 10, 44, 50, 52, 54, 19, 23, 11, 43, 39, 51, 55, 59, 20, 22, 24, 42, 40, 38, 56, 58, 60, 141, 21, 25, 29, 41, 37, 69, 57, 61, 425, 142, 140, 26, 28, 30, 36, 70, 68, 62, 424, 426, 143, 139
Offset: 0

Views

Author

Antti Karttunen, Jul 29 2009

Keywords

Examples

			The top left 9 X 9 corner of the array shows how this surjective self-avoiding walk begins (connect the terms in numerical order, 0-1-2-3-...):
   0  1  2 15 16 17 18 19 20
   5  4  3 14 13 12 23 22 21
   6  7  8  9 10 11 24 25 26
  47 46 45 44 43 42 29 28 27
  48 49 50 39 40 41 30 31 32
  53 52 51 38 37 36 35 34 33
  54 55 56 69 70 71 72 73 74
  59 58 57 68 67 66 77 76 75
  60 61 62 63 64 65 78 79 80
		

Crossrefs

Transpose: A163336. Inverse: A163335. One-based version: A163338. Row sums: A163342. Row 0: A163480. Column 0: A163481. Central diagonal: A163343.
See A163357 and A163359 for the Hilbert curve.

Programs

  • Mathematica
    b[{n_, k_}, {m_}] := (A[k, n] = m - 1);
    MapIndexed[b, List @@ PeanoCurve[4][[1]]];
    Table[A[n - k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 07 2021 *)

Formula

a(n) = A163332(A163328(n)).

Extensions

Links to further derived sequences added by Antti Karttunen, Sep 21 2009
Name corrected by Kevin Ryde, Aug 22 2020

A163336 Peano curve in an n X n grid, starting downwards from the top left corner, listed antidiagonally as A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), ...

Original entry on oeis.org

0, 5, 1, 6, 4, 2, 47, 7, 3, 15, 48, 46, 8, 14, 16, 53, 49, 45, 9, 13, 17, 54, 52, 50, 44, 10, 12, 18, 59, 55, 51, 39, 43, 11, 23, 19, 60, 58, 56, 38, 40, 42, 24, 22, 20, 425, 61, 57, 69, 37, 41, 29, 25, 21, 141, 426, 424, 62, 68, 70, 36, 30, 28, 26, 140, 142, 431, 427
Offset: 0

Views

Author

Antti Karttunen, Jul 29 2009

Keywords

Examples

			The top left 9 X 9 corner of the array shows how this surjective self-avoiding walk begins (connect the terms in numerical order, 0-1-2-3-...):
   0  5  6 47 48 53 54 59 60
   1  4  7 46 49 52 55 58 61
   2  3  8 45 50 51 56 57 62
  15 14  9 44 39 38 69 68 63
  16 13 10 43 40 37 70 67 64
  17 12 11 42 41 36 71 66 65
  18 23 24 29 30 35 72 77 78
  19 22 25 28 31 34 73 76 79
  20 21 26 27 32 33 74 75 80
		

Crossrefs

Transpose: A163334. Inverse: A163337. a(n) = A163332(A163330(n)) = A163327(A163333(A163328(n))) = A163334(A061579(n)). One-based version: A163340. Row sums: A163342. Row 0: A163481. Column 0: A163480. Central diagonal: A163343.
See A163357 and A163359 for the Hilbert curve.

Programs

  • Mathematica
    b[{n_, k_}, {m_}] := (A[n, k] = m - 1);
    MapIndexed[b, List @@ PeanoCurve[4][[1]]];
    Table[A[n - k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 07 2021 *)

Extensions

Name corrected by Kevin Ryde, Aug 28 2020

A163480 Row 0 of A163334 (column 0 of A163336).

Original entry on oeis.org

0, 1, 2, 15, 16, 17, 18, 19, 20, 141, 142, 143, 144, 145, 146, 159, 160, 161, 162, 163, 164, 177, 178, 179, 180, 181, 182, 1275, 1276, 1277, 1278, 1279, 1280, 1293, 1294, 1295, 1296, 1297, 1298, 1311, 1312, 1313, 1314, 1315, 1316, 1437, 1438, 1439
Offset: 0

Views

Author

Antti Karttunen, Jul 29 2009

Keywords

Crossrefs

Cf. A163481 (Y axis), A037314 (Z-order X axis).
Coordinates: A163528, A163529.

Programs

  • PARI
    a(n) = my(v=digits(n,3),s=Mod(0,2)); for(i=1,#v, if(s,v[i]+=6); s+=v[i]); fromdigits(v,9); \\ Kevin Ryde, Sep 29 2020

Formula

a(n) = A163332(A037314(n)). - Kevin Ryde, Sep 29 2020

A163343 Central diagonal of A163334 and A163336.

Original entry on oeis.org

0, 4, 8, 44, 40, 36, 72, 76, 80, 404, 400, 396, 360, 364, 368, 332, 328, 324, 648, 652, 656, 692, 688, 684, 720, 724, 728, 3644, 3640, 3636, 3600, 3604, 3608, 3572, 3568, 3564, 3240, 3244, 3248, 3284, 3280, 3276, 3312, 3316, 3320, 2996, 2992, 2988
Offset: 0

Views

Author

Antti Karttunen, Jul 29 2009

Keywords

Comments

It is easy to see by induction that these terms are always divisible by 4.

Crossrefs

Peano curve axes: A163480, A163481.

Programs

  • PARI
    a(n) = my(v=digits(n,3),s=Mod(0,2)); for(i=1,#v, if(s,v[i]=2-v[i]); s+=v[i]); fromdigits(v,9)<<2; \\ Kevin Ryde, Nov 06 2020

Formula

a(n) = 4*A163344(n).
a(n) = A163332(A338086(n)) = A338086(A128173(n)). - Kevin Ryde, Nov 06 2020
Showing 1-4 of 4 results.