cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A163357 Hilbert curve in N X N grid, starting rightwards from the top-left corner, listed by descending antidiagonals.

Original entry on oeis.org

0, 1, 3, 14, 2, 4, 15, 13, 7, 5, 16, 12, 8, 6, 58, 19, 17, 11, 9, 57, 59, 20, 18, 30, 10, 54, 56, 60, 21, 23, 29, 31, 53, 55, 61, 63, 234, 22, 24, 28, 32, 52, 50, 62, 64, 235, 233, 25, 27, 35, 33, 51, 49, 67, 65, 236, 232, 230, 26, 36, 34, 46, 48, 68, 66, 78, 239, 237, 231
Offset: 0

Views

Author

Antti Karttunen, Jul 29 2009

Keywords

Examples

			The top left 8 X 8 corner of the array shows how this surjective self-avoiding walk begins (connect the terms in numerical order, 0-1-2-3-...):
   0  1 14 15 16 19 20 21
   3  2 13 12 17 18 23 22
   4  7  8 11 30 29 24 25
   5  6  9 10 31 28 27 26
  58 57 54 53 32 35 36 37
  59 56 55 52 33 34 39 38
  60 61 50 51 46 45 40 41
  63 62 49 48 47 44 43 42
		

Crossrefs

Transpose: A163359. Inverse: A163358. One-based version: A163361. Row sums: A163365. Row 0: A163482. Column 0: A163483. Central diagonal: A062880. See also A163334 & A163336 for the Peano curve.

Programs

  • Mathematica
    b[{n_, k_}, {m_}] := (A[k, n] = m-1);
    MapIndexed[b, List @@ HilbertCurve[4][[1]]];
    Table[A[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 07 2021 *)

Formula

a(n) = A163355(A054238(n)).

Extensions

Links to further derived sequences added by Antti Karttunen, Sep 21 2009

A059253 Hilbert's Hamiltonian walk on N X N projected onto y axis: m'(3).

Original entry on oeis.org

0, 1, 1, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3, 2, 2, 3, 4, 4, 5, 5, 6, 7, 7, 6, 6, 7, 7, 6, 5, 5, 4, 4, 4, 4, 5, 5, 6, 7, 7, 6, 6, 7, 7, 6, 5, 5, 4, 4, 3, 2, 2, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 2, 3, 3, 2, 2, 3, 3, 2, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3, 2, 2, 3, 4, 5, 5, 4, 4, 4
Offset: 0

Views

Author

Claude Lenormand (claude.lenormand(AT)free.fr), Jan 23 2001

Keywords

Comments

This is the Y-coordinate of the n-th term in the type I Hilbert's Hamiltonian walk A163359 and the X-coordinate of its transpose A163357.

Crossrefs

See also the y-projection, m(3), A059252 as well as A163538, A163540, A163542, A059261, A059285, A163547 and A163528.

Programs

Formula

Initially [m(0) = 0, m'(0) = 0]; recursion: m(2n + 1) = m(2n).m'(2n).f(m'(2n), 2n).c(m(2n), 2n + 1); m'(2n + 1) = m'(2n).f(m(2n), 2n).f(m(2n), 2n).mir(m'(2n)); m(2n) = m(2n - 1).f(m'(2n - 1), 2n - 1).f(m'(2n - 1), 2n - 1).mir(m(2n - 1)); m'(2n) = m'(2n - 1).m(2n - 1).f(m(2n - 1), 2n - 1).c(m'(2n - 1), 2n); where f(m, n) is the alphabetic morphism i := i + 2^n [example: f(0 0 1 1 2 3 3 2 2 3 3 2 1 1 0 0, 2) = 4 4 5 5 6 7 7 6 6 7 7 6 5 5 4 4]; c(m, n) is the complementation to 2^n - 1 alphabetic morphism [example: c(0 0 1 1 2 3 3 2 2 3 3 2 1 1 0 0, 3) = 7 7 6 6 5 4 4 5 5 4 4 5 6 6 7 7]; and mir(m) is the mirror operator [example: mir(0 1 1 0 0 0 1 1 2 2 3 3 3 2 2 3) = 3 2 2 3 3 3 2 2 1 1 0 0 0 1 1 0].
a(n) = A025581(A163358(n)) = A002262(A163360(n)) = A059905(A163356(n)).

Extensions

Extended by Antti Karttunen, Aug 01 2009

A163540 The absolute direction (0=east, 1=south, 2=west, 3=north) taken by the type I Hilbert's Hamiltonian walk A163357 at the step n.

Original entry on oeis.org

0, 1, 2, 1, 1, 0, 3, 0, 1, 0, 3, 3, 2, 3, 0, 0, 1, 0, 3, 0, 0, 1, 2, 1, 0, 1, 2, 2, 3, 2, 1, 1, 1, 0, 3, 0, 0, 1, 2, 1, 0, 1, 2, 2, 3, 2, 1, 2, 2, 3, 0, 3, 3, 2, 1, 2, 3, 2, 1, 1, 0, 1, 2, 1, 1, 0, 3, 0, 0, 1, 2, 1, 0, 1, 2, 2, 3, 2, 1, 1, 0, 1, 2, 1, 1, 0, 3, 0, 1, 0, 3, 3, 2, 3, 0, 0, 0, 1, 2, 1, 1, 0
Offset: 1

Views

Author

Antti Karttunen, Aug 01 2009

Keywords

Comments

Taking every sixteenth term gives the same sequence: (and similarly for all higher powers of 16 as well): a(n) = a(16*n).

Crossrefs

a(n) = A163540(A008598(n)) = A004442(A163541(n)). See also A163542.

Programs

  • Mathematica
    HC = {L[n_ /; IntegerQ[n/2]] :> {F[n], L[n], L[n + 1], R[n + 2]},
       R[n_ /; IntegerQ[(n + 1)/2]] :> {F[n], R[n], R[n + 3], L[n + 2]},
       R[n_ /; IntegerQ[n/2]] :> {L[n], R[n + 1], R[n], F[n + 3]},
       L[n_ /; IntegerQ[(n + 1)/2]] :> {R[n], L[n + 3], L[n], F[n + 1]},
       F[n_ /; IntegerQ[n/2]] :> {L[n], R[n + 1], R[n], L[n + 3]},
       F[n_ /; IntegerQ[(n + 1)/2]] :> {R[n], L[n + 3], L[n], R[n + 1]}};
    a[1] = F[0]; Map[(a[n_ /; IntegerQ[(n - #)/16]] :=
        Part[Flatten[a[(n + 16 - #)/16] /. HC /. HC], #]) &, Range[16]];
    Part[FoldList[Mod[Plus[#1, #2], 4] &, 0,
      a[#] & /@ Range[4^4] /. {F[n_] :> 0, L[n_] :> 1, R[n_] :> -1}],
    2 ;; -1] (* Bradley Klee, Aug 07 2015 *)
  • Scheme
    (define (A163540 n) (modulo (+ 3 (A163538 n) (A163539 n) (abs (A163539 n))) 4))

Formula

a(n) = A010873(A163538(n)+A163539(n)+abs(A163539(n))+3).

A163539 The change in Y-coordinate when moving from the n-1:th to the n-th term in the type I Hilbert's Hamiltonian walk A163357.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, -1, 0, 1, 0, -1, -1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 1, 0, 1, 0, 1, 0, 0, -1, 0, 1, 1, 1, 0, -1, 0, 0, 1, 0, 1, 0, 1, 0, 0, -1, 0, 1, 0, 0, -1, 0, -1, -1, 0, 1, 0, -1, 0, 1, 1, 0, 1, 0, 1, 1, 0, -1, 0, 0, 1, 0, 1, 0, 1, 0, 0, -1, 0, 1, 1, 0, 1, 0, 1, 1, 0, -1, 0, 1, 0, -1, -1, 0
Offset: 0

Views

Author

Antti Karttunen, Aug 01 2009

Keywords

Crossrefs

These are the first differences of A059252. See also: A163538, A163541, A163543.

Formula

a(0)=0, a(n) = A059252(n) - A059252(n-1).

A163541 The absolute direction (0=east, 1=south, 2=west, 3=north) taken by the type I Hilbert's Hamiltonian walk A163359 at the step n.

Original entry on oeis.org

1, 0, 3, 0, 0, 1, 2, 1, 0, 1, 2, 2, 3, 2, 1, 1, 0, 1, 2, 1, 1, 0, 3, 0, 1, 0, 3, 3, 2, 3, 0, 0, 0, 1, 2, 1, 1, 0, 3, 0, 1, 0, 3, 3, 2, 3, 0, 3, 3, 2, 1, 2, 2, 3, 0, 3, 2, 3, 0, 0, 1, 0, 3, 0, 0, 1, 2, 1, 1, 0, 3, 0, 1, 0, 3, 3, 2, 3, 0, 0, 1, 0, 3, 0, 0, 1, 2, 1, 0, 1, 2, 2, 3, 2, 1, 1, 1, 0, 3, 0, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 01 2009

Keywords

Comments

Taking every sixteenth term gives the same sequence: (and similarly for all higher powers of 16 as well): a(n) = a(16*n).

Crossrefs

a(n) = A163541(A008598(n)) = A004442(A163540(n)). See also A163543.

Programs

  • Mathematica
    HC = {L[n_ /; IntegerQ[n/2]] :> {F[n], L[n], L[n + 1], R[n + 2]},
    R[n_ /; IntegerQ[(n + 1)/2]] :> {F[n], R[n], R[n + 3], L[n + 2]},
    R[n_ /; IntegerQ[n/2]] :> {L[n], R[n + 1], R[n], F[n + 3]},
    L[n_ /; IntegerQ[(n + 1)/2]] :> {R[n], L[n + 3], L[n], F[n + 1]},
    F[n_ /; IntegerQ[n/2]] :> {L[n], R[n + 1], R[n], L[n + 3]},
    F[n_ /; IntegerQ[(n + 1)/2]] :> {R[n], L[n + 3], L[n], R[n + 1]}};
    a[1] = L[0]; Map[(a[n_ /; IntegerQ[(n - #)/16]] := Part[Flatten[a[(n + 16 - #)/16]/.HC/.HC],#]) &, Range[16]];
    Part[FoldList[Mod[Plus[#1, #2], 4] &, 0, a[#] & /@ Range[4^4]/.{F[n_]:>0,L[n_]:>1,R[n_]:>-1}], 2 ;; -1] (* Bradley Klee, Aug 07 2015 *)
  • Scheme
    (define (A163541 n) (modulo (+ 3 (A163538 n) (A163539 n) (abs (A163538 n))) 4))

Formula

a(n) = A010873(A163538(n) + A163539(n) + abs(A163538(n)) + 3).
Showing 1-5 of 5 results.