A163357 Hilbert curve in N X N grid, starting rightwards from the top-left corner, listed by descending antidiagonals.
0, 1, 3, 14, 2, 4, 15, 13, 7, 5, 16, 12, 8, 6, 58, 19, 17, 11, 9, 57, 59, 20, 18, 30, 10, 54, 56, 60, 21, 23, 29, 31, 53, 55, 61, 63, 234, 22, 24, 28, 32, 52, 50, 62, 64, 235, 233, 25, 27, 35, 33, 51, 49, 67, 65, 236, 232, 230, 26, 36, 34, 46, 48, 68, 66, 78, 239, 237, 231
Offset: 0
Examples
The top left 8 X 8 corner of the array shows how this surjective self-avoiding walk begins (connect the terms in numerical order, 0-1-2-3-...): 0 1 14 15 16 19 20 21 3 2 13 12 17 18 23 22 4 7 8 11 30 29 24 25 5 6 9 10 31 28 27 26 58 57 54 53 32 35 36 37 59 56 55 52 33 34 39 38 60 61 50 51 46 45 40 41 63 62 49 48 47 44 43 42
Links
- A. Karttunen, Table of n, a(n) for n = 0..32895
- Jörg Arndt, Plane-filling curves on all uniform grids, arXiv:1607.02433v1 [math.CO], July 11, 2016.
- Herman Haverkort, Recursive tilings and space-filling curves
- Herman Haverkort, The Sound of Space-Filling Curves, Proc. Bridges 2017, pp. 399-402.
- Eric Weisstein's World of Mathematics, Hilbert curve
- Wikipedia, Self-avoiding walk
- Wikipedia, Space-filling curve
- Index entries for sequences that are permutations of the nonnegative integers
Crossrefs
Programs
-
Mathematica
b[{n_, k_}, {m_}] := (A[k, n] = m-1); MapIndexed[b, List @@ HilbertCurve[4][[1]]]; Table[A[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 07 2021 *)
Extensions
Links to further derived sequences added by Antti Karttunen, Sep 21 2009
Comments