A163540 The absolute direction (0=east, 1=south, 2=west, 3=north) taken by the type I Hilbert's Hamiltonian walk A163357 at the step n.
0, 1, 2, 1, 1, 0, 3, 0, 1, 0, 3, 3, 2, 3, 0, 0, 1, 0, 3, 0, 0, 1, 2, 1, 0, 1, 2, 2, 3, 2, 1, 1, 1, 0, 3, 0, 0, 1, 2, 1, 0, 1, 2, 2, 3, 2, 1, 2, 2, 3, 0, 3, 3, 2, 1, 2, 3, 2, 1, 1, 0, 1, 2, 1, 1, 0, 3, 0, 0, 1, 2, 1, 0, 1, 2, 2, 3, 2, 1, 1, 0, 1, 2, 1, 1, 0, 3, 0, 1, 0, 3, 3, 2, 3, 0, 0, 0, 1, 2, 1, 1, 0
Offset: 1
Keywords
Links
- A. Karttunen, Table of n, a(n) for n = 1..65536
Programs
-
Mathematica
HC = {L[n_ /; IntegerQ[n/2]] :> {F[n], L[n], L[n + 1], R[n + 2]}, R[n_ /; IntegerQ[(n + 1)/2]] :> {F[n], R[n], R[n + 3], L[n + 2]}, R[n_ /; IntegerQ[n/2]] :> {L[n], R[n + 1], R[n], F[n + 3]}, L[n_ /; IntegerQ[(n + 1)/2]] :> {R[n], L[n + 3], L[n], F[n + 1]}, F[n_ /; IntegerQ[n/2]] :> {L[n], R[n + 1], R[n], L[n + 3]}, F[n_ /; IntegerQ[(n + 1)/2]] :> {R[n], L[n + 3], L[n], R[n + 1]}}; a[1] = F[0]; Map[(a[n_ /; IntegerQ[(n - #)/16]] := Part[Flatten[a[(n + 16 - #)/16] /. HC /. HC], #]) &, Range[16]]; Part[FoldList[Mod[Plus[#1, #2], 4] &, 0, a[#] & /@ Range[4^4] /. {F[n_] :> 0, L[n_] :> 1, R[n_] :> -1}], 2 ;; -1] (* Bradley Klee, Aug 07 2015 *)
-
Scheme
(define (A163540 n) (modulo (+ 3 (A163538 n) (A163539 n) (abs (A163539 n))) 4))
Comments