A163541 The absolute direction (0=east, 1=south, 2=west, 3=north) taken by the type I Hilbert's Hamiltonian walk A163359 at the step n.
1, 0, 3, 0, 0, 1, 2, 1, 0, 1, 2, 2, 3, 2, 1, 1, 0, 1, 2, 1, 1, 0, 3, 0, 1, 0, 3, 3, 2, 3, 0, 0, 0, 1, 2, 1, 1, 0, 3, 0, 1, 0, 3, 3, 2, 3, 0, 3, 3, 2, 1, 2, 2, 3, 0, 3, 2, 3, 0, 0, 1, 0, 3, 0, 0, 1, 2, 1, 1, 0, 3, 0, 1, 0, 3, 3, 2, 3, 0, 0, 1, 0, 3, 0, 0, 1, 2, 1, 0, 1, 2, 2, 3, 2, 1, 1, 1, 0, 3, 0, 0, 1
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..4096
Programs
-
Mathematica
HC = {L[n_ /; IntegerQ[n/2]] :> {F[n], L[n], L[n + 1], R[n + 2]}, R[n_ /; IntegerQ[(n + 1)/2]] :> {F[n], R[n], R[n + 3], L[n + 2]}, R[n_ /; IntegerQ[n/2]] :> {L[n], R[n + 1], R[n], F[n + 3]}, L[n_ /; IntegerQ[(n + 1)/2]] :> {R[n], L[n + 3], L[n], F[n + 1]}, F[n_ /; IntegerQ[n/2]] :> {L[n], R[n + 1], R[n], L[n + 3]}, F[n_ /; IntegerQ[(n + 1)/2]] :> {R[n], L[n + 3], L[n], R[n + 1]}}; a[1] = L[0]; Map[(a[n_ /; IntegerQ[(n - #)/16]] := Part[Flatten[a[(n + 16 - #)/16]/.HC/.HC],#]) &, Range[16]]; Part[FoldList[Mod[Plus[#1, #2], 4] &, 0, a[#] & /@ Range[4^4]/.{F[n_]:>0,L[n_]:>1,R[n_]:>-1}], 2 ;; -1] (* Bradley Klee, Aug 07 2015 *)
-
Scheme
(define (A163541 n) (modulo (+ 3 (A163538 n) (A163539 n) (abs (A163538 n))) 4))
Comments