cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163542 The relative direction (0=straight ahead, 1=turn right, 2=turn left) taken by the type I Hilbert's Hamiltonian walk A163357 at the step n.

Original entry on oeis.org

1, 1, 2, 0, 2, 2, 1, 1, 2, 2, 0, 2, 1, 1, 0, 1, 2, 2, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 2, 2, 0, 0, 2, 2, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 1, 2, 2, 0, 2, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 2, 2, 0, 2, 1, 1, 2, 0, 2, 2, 1, 1, 2, 2, 0, 2, 1, 1, 0, 0, 1, 1, 2, 0, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Aug 01 2009

Keywords

Comments

a(16*n) = a(256*n) for all n.

Crossrefs

a(n) = A014681(A163543(n)). See also A163540.

Programs

  • Mathematica
    HC = {L[n_ /; IntegerQ[n/2]] :> {F[n], L[n], L[n + 1], R[n + 2]},
       R[n_ /; IntegerQ[(n + 1)/2]] :> {F[n], R[n], R[n + 3], L[n + 2]},
       R[n_ /; IntegerQ[n/2]] :> {L[n], R[n + 1], R[n], F[n + 3]},
       L[n_ /; IntegerQ[(n + 1)/2]] :> {R[n], L[n + 3], L[n], F[n + 1]},
       F[n_ /; IntegerQ[n/2]] :> {L[n], R[n + 1], R[n], L[n + 3]},
       F[n_ /; IntegerQ[(n + 1)/2]] :> {R[n], L[n + 3], L[n], R[n + 1]}};
    a[1] = L[0]; Map[(a[n_ /; IntegerQ[(n - #)/16]] :=
        Part[Flatten[a[(n + 16 - #)/16] /. HC /. HC], #]) &, Range[16]];
    Part[a[#] & /@ Range[4^4] /. {L[] -> 2, R[] -> 1, F[_] -> 0},
    2 ;; -1] (* Bradley Klee, Aug 07 2015 *)
  • Scheme
    (define (A163542 n) (A163241 (modulo (- (A163540 (1+ n)) (A163540 n)) 4)))

Formula

a(n) = A163241((A163540(n+1)-A163540(n)) modulo 4).