A163543 The relative direction (0=straight ahead, 1=turn right, 2=turn left) taken by the type I Hilbert's Hamiltonian walk A163359 at the step n.
2, 2, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 2, 2, 0, 2, 1, 1, 2, 0, 2, 2, 1, 1, 2, 2, 0, 2, 1, 1, 0, 0, 1, 1, 2, 0, 2, 2, 1, 1, 2, 2, 0, 2, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 1, 2, 2, 0, 2, 1, 1, 0, 1, 2, 2, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 2, 2, 0, 0, 2, 2, 1, 0, 1, 1
Offset: 1
Keywords
Links
- A. Karttunen, Table of n, a(n) for n = 1..4096
Programs
-
Mathematica
HC = { L[n_ /; IntegerQ[n/2]] :> {F[n], L[n], L[n + 1], R[n + 2]}, R[n_ /; IntegerQ[(n + 1)/2]] :> {F[n], R[n], R[n + 3], L[n + 2]}, R[n_ /; IntegerQ[n/2]] :> {L[n], R[n + 1], R[n], F[n + 3]}, L[n_ /; IntegerQ[(n + 1)/2]] :> {R[n], L[n + 3], L[n], F[n + 1]}, F[n_ /; IntegerQ[n/2]] :> {L[n], R[n + 1], R[n], L[n + 3]}, F[n_ /; IntegerQ[(n + 1)/2]] :> {R[n], L[n + 3], L[n], R[n + 1]}}; a[1] = F[0]; Map[(a[n_ /; IntegerQ[(n - #)/16] ] := Part[Flatten[a[(n + 16 - #)/16] /. HC /. HC],#]) &, Range[16]]; Part[a[#] & /@ Range[4^4] /. {L[] -> 2, R[] -> 1, F[] -> 0}, 2 ;; -1] (* _Bradley Klee, Aug 06 2015 *)
-
Scheme
(define (A163543 n) (A163241 (modulo (- (A163541 (1+ n)) (A163541 n)) 4)))
Comments