A163581 Number of zeros of sin(x) in integer intervals starting with (0,1).
0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0
Offset: 0
Keywords
Examples
For n = 0, 1 and 2, sin(x) has no zeros in the intervals (0,1), (1,2) and (2,3), respectively, so a(0), a(1) and a(2) are all zero. For n = 3, sin(x) has a zero in the interval (3,4) at x = pi, so a(3) = 1.
Crossrefs
Cf. A163584.
Formula
a(n) = 1 if n < m*pi < (n+1) for any positive integer m; a(n) = 0 otherwise.
For n>0, a(A022844(n)) = 1. - Michel Marcus, Aug 07 2013