A163582 Smallest pseudoprimes in ascending bases b of the form pq, where p = (b^k - 1) / (b - 1) and q = (b^k + 1) / (b + 1), both prime, with k a prime less than 100.
341, 597871, 1010101010101010101010101010101010101, 432988561, 584645231109031, 54989488181, 48793204382746801501446610630739608190006929723969, 11694525061301
Offset: 2
Keywords
Examples
341 = 11 * 31 is a base 2 pseudoprime; 2^340 = 1 (mod 341). 597871 = 547 * 1093 is a base 3 pseudoprime; 3^597870 = 1 (mod 597871). 1010101010101010101010101010101010101 = 909090909090909091 * 1111111111111111111 is a base 10 pseudoprime. The smallest base 387 pseudoprime semiprime has 1204 bits: 190343478807499085058031516398268680442601127373980882552883668761244360084075072419711216782718751807174818426029099795926922432206385551671790497449073768776989824173201266255008090697631436472577273835739136689804694203609505130893771033656337490070783749133621893887506391690839509492668015407074108567267922714146861065256735761674160812989129563106060165551 which has factors 13760898475567760339045070218774452423864352937859851193617152180919304736064745532601237230112112091064203139709556823171465678472351610172571294148439637693965101978819764531439203 and 13832198467669147698314733795037532488236707098159643168713614109317850356458863385101761775345853604489406264785772143498778972143192810225278917434182848251964921160057172637819717 The large factor can be found in 8 iterations, taking six seconds on a 2GHz processor. In general, factorization requires less than a minute for numbers having fewer than 2000 bits.
Comments