A163641 The radical of the swinging factorial A056040.
1, 1, 2, 6, 6, 30, 10, 70, 70, 210, 42, 462, 462, 6006, 858, 4290, 4290, 72930, 24310, 461890, 92378, 1939938, 176358, 4056234, 1352078, 6760390, 520030, 1560090, 222870, 6463230, 6463230, 200360130
Offset: 0
Keywords
Examples
11$ = 2772 = 2^2*3^2*7*11. Therefore a(11) = 2*3*7*11 = 462.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
- Peter Luschny, Swinging Factorial.
Programs
-
Maple
a := proc(n) local p; mul(p,p=numtheory[factorset](n!/iquo(n,2)!^2)) end:
-
Mathematica
sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[0] = 1; a[n_] := Times @@ FactorInteger[sf[n]][[All, 1]]; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Jul 26 2013 *)
Formula
a(n) = rad(n$).
Comments