cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A163640 The radical of the swinging factorial A056040 for odd indices.

Original entry on oeis.org

1, 6, 30, 70, 210, 462, 6006, 4290, 72930, 461890, 1939938, 4056234, 6760390, 1560090, 6463230, 200360130, 2203961430, 907513530, 33578000610, 22974421470, 941951280270, 5786272150230, 526024740930, 1074920122770, 7524440859390, 25583098921926, 104300326374006, 1912172650190110
Offset: 0

Views

Author

Peter Luschny, Aug 02 2009

Keywords

Comments

Let $ denote the swinging factorial. a(n) is the radical of (2*n+1)$ which is the product of the prime numbers dividing (2*n+1)$. It is the largest squarefree divisor of (2*n+1)$, and so also described as the squarefree kernel of (2*n+1)$.

Examples

			(2*5+1)$ = 2772 = 2^2*3^2*7*11. Therefore a(5) = 2*3*7*11 = 462.
		

Crossrefs

A056040(n) = n$, A163641(n) = rad(n$), A080397(n) = rad((2n)$).

Programs

  • Maple
    a := proc(n) local p; mul(p,p=numtheory[factorset]((2*n+1)!/iquo(2*n+1,2)!^2)) end:
  • Mathematica
    sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[n_] := Times @@ FactorInteger[sf[2*n + 1]][[All, 1]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 30 2013 *)

Extensions

More terms from Michel Marcus, Aug 22 2025

A163644 Product of primes which do not exceed n and do not divide the swinging factorial n$ (A056040).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 5, 5, 5, 5, 35, 7, 7, 7, 21, 21, 105, 5, 55, 55, 165, 33, 429, 143, 1001, 1001, 1001, 1001, 1001, 91, 1547, 221, 221, 221, 4199, 323, 323, 323, 2261, 2261, 24871, 24871, 572033, 572033, 572033, 81719, 408595, 24035, 312455
Offset: 0

Views

Author

Peter Luschny, Aug 02 2009

Keywords

Examples

			a(20) = 105 because in the prime-factorization of 20$ the primes 3, 5 and 7 are missing and 3*5*7 = 105.
		

Crossrefs

Programs

  • Maple
    a := proc(n) local p; mul(p,p=select(isprime,{$1..n})
    minus numtheory[factorset](n!/iquo(n,2)!^2)) end:
  • Mathematica
    A034386[x_] := Apply[Times, Table[Prime[w], {w, 1, PrimePi[x]}]];
    sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f + 1, n - f]/f!];
    A163641[0] = 1; A163641[n_] := Times @@ FactorInteger[sf[n]][[All, 1]]; Join[{1}, Table[A034386[n]/A163641[n], {n, 1, 50}]] (* G. C. Greubel, Aug 01 2017 *)

Formula

a(n) = primorial(n) / rad(n$) = A034386(n) / A163641(n).
Showing 1-2 of 2 results.