cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163644 Product of primes which do not exceed n and do not divide the swinging factorial n$ (A056040).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 5, 5, 5, 5, 35, 7, 7, 7, 21, 21, 105, 5, 55, 55, 165, 33, 429, 143, 1001, 1001, 1001, 1001, 1001, 91, 1547, 221, 221, 221, 4199, 323, 323, 323, 2261, 2261, 24871, 24871, 572033, 572033, 572033, 81719, 408595, 24035, 312455
Offset: 0

Views

Author

Peter Luschny, Aug 02 2009

Keywords

Examples

			a(20) = 105 because in the prime-factorization of 20$ the primes 3, 5 and 7 are missing and 3*5*7 = 105.
		

Crossrefs

Programs

  • Maple
    a := proc(n) local p; mul(p,p=select(isprime,{$1..n})
    minus numtheory[factorset](n!/iquo(n,2)!^2)) end:
  • Mathematica
    A034386[x_] := Apply[Times, Table[Prime[w], {w, 1, PrimePi[x]}]];
    sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f + 1, n - f]/f!];
    A163641[0] = 1; A163641[n_] := Times @@ FactorInteger[sf[n]][[All, 1]]; Join[{1}, Table[A034386[n]/A163641[n], {n, 1, 50}]] (* G. C. Greubel, Aug 01 2017 *)

Formula

a(n) = primorial(n) / rad(n$) = A034386(n) / A163641(n).